11.某個(gè)與正整數(shù)n有關(guān)的命題:已知當(dāng)n=3時(shí)該命題不成立,如果當(dāng)n=k(k∈N+)時(shí)命題成立,可推得當(dāng)n=k+1時(shí)命題也成立.那么可推得(  )
A.當(dāng)n=5時(shí)該命題不成立B.當(dāng)n=5時(shí)該命題成立
C.當(dāng)n=2時(shí)該命題不成立D.當(dāng)n=2時(shí)該命題成立

分析 本題考查的知識(shí)點(diǎn)是數(shù)學(xué)歸納法,由歸納法的性質(zhì),我們由P(n)對(duì)n=k成立,則它對(duì)n=k+1也成立,由此類推,對(duì)n>k的任意整數(shù)均成立,結(jié)合逆否命題同真同假的原理,當(dāng)P(n)對(duì)n=k不成立時(shí),則它對(duì)n=k-1也不成立,由此類推,對(duì)n<k的任意正整數(shù)均不成立,由此不難得到答案.

解答 解:由題意可知,原命題成立則逆否命題成立,
P(n)對(duì)n=3不成立,P(n)對(duì)n=2也不成立,
否則n=2時(shí),由由已知推得n=3也成立.
與當(dāng)n=3時(shí)該命題不成立矛盾,
故選:C.

點(diǎn)評(píng) 當(dāng)P(n)對(duì)n=k成立,則它對(duì)n=k+1也成立,由此類推,對(duì)n>k的任意整數(shù)均成立;結(jié)合逆否命題同真同假的原理,當(dāng)P(n)對(duì)n=k不成立時(shí),則它對(duì)n=k-1也不成立,由此類推,對(duì)n<k的任意正整數(shù)均不成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若函數(shù)f(x)=x2-2x,則f(8)=48,f(x+1)=x2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{\root{3}{{x}^{2}+2x+1}+\root{3}{{x}^{2}-1}+\root{3}{{x}^{2}-2x+1}}$,求f(1)+f(3)+f(5)+…+f(2k-1)+…+f(999)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.下列說(shuō)法不正確的有①②③④. 
①若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$的方向相同或 相反;
②若λ$\overrightarrow{a}$=$\overrightarrow{0}$,則λ=0;
③相反向量必不相等;
④若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$,λ∈R且 λ≠0,則$\overrightarrow{a}$∥$\overrightarrow$的充要條件是$\overrightarrow{{e}_{2}}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{p{x^2}+1}}{x+q}$是奇函數(shù),且f(2)=$\frac{5}{2}$.
(1)求實(shí)數(shù)p,q的值;
(2)判斷f(x)在[1,+∞)上的單調(diào)性,并證明你的結(jié)論;
(3)若對(duì)任意的t≥1,試比較f(t2-t+1)與f(2t2-t)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若tanx<0,則(  )
A.sinx<0B.cosx<0C.sin2x<0D.cos2x<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知向量$\overrightarrow a=(3,1),\overrightarrow b=(1,3),\overrightarrow c=(k,2)$,若$(\overrightarrow a-\overrightarrow c)∥\overrightarrow b$,則k=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某觀察站C與兩燈塔A、B的距離分別為x米和3千米,測(cè)得燈塔A在觀察站C的正西方向,燈塔B在觀察站C西偏南30°,若兩燈塔A、B之間的距離恰好為$\sqrt{3}$千米,則x的值為( 。
A.3B.$\sqrt{3}$C.$2\sqrt{3}$D.$\sqrt{3}$或$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知點(diǎn)P為△ABC所在平面內(nèi)一點(diǎn),且滿足$\overrightarrow{AP}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$)(λ∈R),則直線AP必經(jīng)過(guò)△ABC的( 。
A.重心B.內(nèi)心C.垂心D.外心

查看答案和解析>>

同步練習(xí)冊(cè)答案