選修4-5:不等式選講
已知關(guān)于x的不等式|2x+1|-|x-1|≤log2a(其中a>0).
(1)當(dāng)a=4時(shí),求不等式的解集;
(2)若不等式有解,求實(shí)數(shù)a的取值范圍.

解:(Ⅰ)當(dāng)a=4時(shí),不等式即|2x+1|-|x-1|≤2,當(dāng)時(shí),不等式為-x-2≤2,解得.(1分)
當(dāng)時(shí),不等式為 3x≤2,解得.(2分) 當(dāng)x>1時(shí),不等式為x+2≤2,此時(shí)x不存在.(3分)
綜上,不等式的解集為.(5分)
(Ⅱ)設(shè)f(x)=|2x+1|-|x-1|=,
,即f(x)的最小值為.(8分)
所以,當(dāng)f(x)≤log2a有解,則有 ,解得,即a的取值范圍是.(10分)
分析:(Ⅰ)當(dāng)a=4時(shí),不等式即|2x+1|-|x-1|≤2,分類討論,去掉絕對(duì)值,分別求出解集,再取并集,即得所求.
(Ⅱ)化簡(jiǎn)f(x)=|2x+1|-|x-1|的解析式,求出f(x)的最小值為,則由 ,解得實(shí)數(shù)a的取值范圍.
點(diǎn)評(píng):本題主要考查絕對(duì)值不等式的解法,關(guān)鍵是去掉絕對(duì)值,化為與之等價(jià)的不等式組來解,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
設(shè)x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-5:不等式選講】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講:
設(shè)正有理數(shù)x是
2
的一個(gè)近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求證:y<
2
;
(Ⅱ)比較y與x哪一個(gè)更接近于
2
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城模擬)(選修4-5:不等式選講)
已知a,b,c為正數(shù),且a2+a2+c2=14,試求a+2b+3c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊一模)選修4-5:不等式選講
設(shè)函數(shù),f(x)=|x-1|+|x-2|.
(I)求證f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案