已知橢圓的焦點是F1(-1,0)、F2(1,0),P為橢圓上一點,且|F1F2|是|PF1|與|PF2|的等差中項,則橢圓方程為_________________.
+=1
∵|F1F2|=2,∴|PF1|+|PF2|=2|F1F2|=4,即2a=4.
∴a=2.又c=1,∴b2=3.
而橢圓焦點在x軸上,
∴所求橢圓方程為+=1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

求過點P(3,0)且與圓x2+6x+y2-91=0相內(nèi)切的動圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若方程x2cosα-y2sinα+2=0表示一個橢圓,則圓(x+cosα)2+(y+sinα)2=1的圓心在第_____________象限.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓=1(a>b>0)與x軸的正半軸交于點A,O是原點.若橢圓上存在一點M,使MA⊥MO,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方已知△ABC的周長是8,B、C的坐標分別是(-1,0)和(1,0),則頂點A的軌跡方程是(    )
A.=1(x≠±3)                         B.=1(x≠0)
C.=1(y≠0)                           D.=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的短軸長是2,長軸是短軸的2倍,則橢圓中心到其準線的距離是___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題








⑴求橢圓的方程;
⑵設為橢圓上任意一點,以為圓心,為半徑作圓,當圓與橢圓的右準線 有公共點時,求△面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓+y2=1上一點P到右焦點F的距離為,則P到左準線的距離為________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知方程=1表示焦點在y軸上的橢圓,則m的取值范圍是(   )
A.-9<m<25B.8<m<25
C.16<m<25D.m>8

查看答案和解析>>

同步練習冊答案