已知雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率是
2
,則該雙曲線的漸近線方程是( 。
A、y=±
1
2
x
B、y=±
2
2
x
C、y=±x
D、y=±
2
x
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由條件設(shè)出雙曲線的方程,運(yùn)用離心率公式及a,b,c的關(guān)系,即可得到a=b,進(jìn)而求得漸近線方程.
解答: 解:由于雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,
可設(shè)雙曲線的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
則e=
c
a
=
2

b2=c2-a2=a2,即有a=b,
則雙曲線的漸近線方程為y=±
b
a
x,即為y=±x,
故選C.
點(diǎn)評:本題考查雙曲線的方程和性質(zhì),考查離心率公式和漸近線方程的求法,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正方體的棱長為2,一個球內(nèi)切于該正方體,那么這個球的體積是( 。
A、
6
π
B、
32
3
π
C、
8
3
π
D、
4
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,-π<φ<π )的一個最高點(diǎn)坐標(biāo)為(
π
12
,3),其圖象與x軸的相鄰兩個交點(diǎn)的距離為
π
2

(1)求f(x)的最小正周期及解析式;
(2)若x∈[-
π
2
,
π
12
),求函數(shù)g(x)=f(x+
π
6
)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩數(shù)5280,12155的最大公約數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y滿足約束條件:
x-y≥0
x+2y≤4
x-2y≤1
,則Z=x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于下列命題:
①函數(shù)y=tanx在第一象限是增函數(shù);
②函數(shù)y=cos2(
π
4
-x)是奇函數(shù);
③函數(shù)y=sin2x-2sinx的值域是[-1,+∞);
④函數(shù)y=sin(
π
4
-2x)在(kπ+
8
,kπ+
8
),k∈Z上是增函數(shù);
⑤設(shè)函數(shù)f(x)=
(
1
2
)x,x≤0
x
1
2
,x>0
,若f(x0)>2,則x0的取值范圍是(-∞,-1)∪(4,+∞).
寫出所有正確的命題的題號
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x0是函數(shù)f(x)=(
1
2
x+
1
1+x
的一個零點(diǎn),若x1∈(-∞,x0),x2∈(x0,-1),則(  )
A、f(x1)<0,f(x2)<0
B、f(x1)<0,f(x2)>0
C、f(x1)>0,f(x2)<0
D、f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

O、A、B是平面上不共線三點(diǎn),向量
OA
=
a
,
OB
=
b
,設(shè)P為線段AB垂直平分線上任意一點(diǎn),向量
OP
=
p
,|
a
|=3,|
b
|=1,則
p
•(
a
-
b
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈[-2,3],-1<x<3”的否定是
 

查看答案和解析>>

同步練習(xí)冊答案