【題目】選修4—5:不等式選講

設(shè)

1)當(dāng)時(shí),解不等式

2)若對任意恒成立,求實(shí)數(shù)的取值范圍.

【答案】1;(2

【解析】

試題本題主要考查絕對值不等式的解法、恒成立問題、函數(shù)的最值等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,將代入,利用零點(diǎn)分段法去掉絕對值符號解不等式;第二問,將對于恒成立,轉(zhuǎn)化為對于恒成立,先將轉(zhuǎn)化為分段函數(shù),結(jié)合圖象求出函數(shù)的最小值,代入到中,即解出m的取值范圍.

試題解析:(1)當(dāng)時(shí),

不等式,

當(dāng)時(shí),不等式為:,即,滿足;

當(dāng)時(shí),不等式為:,即,不滿足;

當(dāng)時(shí),不等式為:,即,滿足.

綜上所述,不等式的解集為

2)設(shè),若對于恒成立,

對于恒成立,

由圖可看出的最小值是,

所以,,即m的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求的單調(diào)區(qū)間;

2)過點(diǎn)存在幾條直線與曲線相切,并說明理由;

3)若對任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出:堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),做到精準(zhǔn)扶貧,某幫扶單位為幫助定點(diǎn)扶貧村真正脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植臍橙,并利用互聯(lián)網(wǎng)電商進(jìn)行銷售,為了提高銷量,現(xiàn)從該村的臍橙樹上隨機(jī)摘下100個(gè)臍橙進(jìn)行測重,其質(zhì)量(單位克)分布在區(qū)間[200,500內(nèi),由統(tǒng)計(jì)的質(zhì)量數(shù)據(jù)作出頻率分布直方圖如圖所示.

1)按分層抽樣的方法從質(zhì)量在的臍橙中隨機(jī)抽取5個(gè),再從這5個(gè)臍橙中隨機(jī)抽取2個(gè),求這2個(gè)臍橙質(zhì)量至少有一個(gè)不小于400克的概率;

2)以各組數(shù)據(jù)的中間數(shù)值代替這組數(shù)據(jù)的平均值,以頻率代替概率,已知該村的臍橙種植地上大約還有100000個(gè)臍橙待出售,某電商提出兩種收購方案:

A.所有臍橙均以7/千克收購;

B.低于350克的臍橙以2/個(gè)收購,其余的以3/個(gè)收購.

請你通過計(jì)算為該村選擇收益較好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若是函數(shù)的一個(gè)極值點(diǎn),試討論的單調(diào)性;

2)若R上有且僅有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的內(nèi)角A,BC的對邊分別為a,b,c

(1)若的面積,求a+c值;

(2)若2cosC+)=c2,求角C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校組織由5名學(xué)生參加的演講比賽,采用抽簽法決定演講順序,在“學(xué)生都不是第一個(gè)出場,不是最后一個(gè)出場”的前提下,學(xué)生第一個(gè)出場的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為菱形, , ,且平面平面.

(1)求證: ;

(2)若, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價(jià)為元,低于箱按原價(jià)銷售,不低于箱則有以下兩種優(yōu)惠方案:①以箱為基準(zhǔn),每多箱送箱;②通過雙方議價(jià),買方能以優(yōu)惠成交的概率為,以優(yōu)惠成交的概率為.

甲、乙兩單位都要在該廠購買箱這種零件,兩單位都選擇方案②,且各自達(dá)成的成交價(jià)格相互獨(dú)立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

某單位需要這種零件箱,以購買總價(jià)的數(shù)學(xué)期望為決策依據(jù),試問該單位選擇哪種優(yōu)惠方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于濃酸泄漏對河流形成了污染,現(xiàn)決定向河中投入固體堿,1個(gè)單位的固體堿在水中逐步溶化,水中的堿濃度與時(shí)間的關(guān)系,可近似地表示為,只有當(dāng)河流中堿的濃度不低于1時(shí),才能對污染產(chǎn)生有效的抑制作用.

1)如果只投放1個(gè)單位的固體堿,則能夠維持有效抑制作用的時(shí)間有多長?

2)當(dāng)河中的堿濃度開始下降時(shí),即刻第二次投放1個(gè)單位的固體堿,此后,每一時(shí)刻河中的堿濃度認(rèn)為是各次投放的堿在該時(shí)刻相應(yīng)的堿濃度的和,求河中堿濃度可能取得的最大值.

查看答案和解析>>

同步練習(xí)冊答案