函數(shù)f(x)=
ax+1
x+2
在區(qū)間(-2,+∞)上為增函數(shù),則a的取值范圍為( 。
分析:確定函數(shù)的定義域,再利用導(dǎo)數(shù)法確定函數(shù)的單調(diào)性,即可求得a的取值范圍.
解答:解:函數(shù)的定義域?yàn)椋海?∞,-2)∪(2,+∞)
求導(dǎo)函數(shù)可得:f′(x)=
a(x+2)-(ax+1)
(x+2)2
=
2a-1
(x+2)2

令f′(x)>0,可得2a-1>0
a>
1
2

a>
1
2
時,函數(shù)f(x)=
ax+1
x+2
在區(qū)間(-2,+∞)上為增函數(shù)
∴a的取值范圍為(
1
2
,+∞)

故選C.
點(diǎn)評:本題考查函數(shù)的單調(diào)性,考查導(dǎo)數(shù)知識的運(yùn)用,解題的關(guān)鍵是正確求出導(dǎo)函數(shù),合理運(yùn)用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ax+2b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(1)=
1
2

(1)求函數(shù)f(x)的解析式;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)解不等式f(2-t)+f(
t
5
)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax,(x<0)
(a-3)x+4a,(x≥0)
滿足對任意的實(shí)數(shù)x1≠x2都有
f(x1)-f(x2)
x1-x2
<0
成立,則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(-1,1)上的函數(shù)f(x)=
ax+b
1+x2
為奇函數(shù),且f(
1
2
)=
2
5

(1)求實(shí)數(shù)a,b的值;
(2)用定義證明:函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù);
(3)解關(guān)于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax-1x+1
,  其中 a∈R

(1)當(dāng)a=1時,求函數(shù)滿足f(x)≤1時的x的集合;
(2)求a的取值范圍,使f(x)在區(qū)間(0,+∞)上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
a-1x
 (a∈R)
,g(x)=lnx.
(1)若對任意的實(shí)數(shù)a,函數(shù)f(x)與g(x)的圖象在x=x0處的切線斜率總相等,求x0的值;
(2)若a>0,對任意x>0,不等式f(x)-g(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案