曲線y=xex在x=1處的切線方程為( 。
A、ex-y=0
B、(1-e)x+y-1=0
C、2ex-y-e=0
D、(1+e)x-y-1=0
考點:利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的綜合應用
分析:求出函數(shù)的導函數(shù),得到函數(shù)在x=1處的導數(shù),然后直接由直線方程的點斜式得答案.
解答:解:由y=xex,得y′=(x+1)•ex,
∴y′|x=1=2e,
又f(1)=e,
∴曲線y=xex在x=1處的切線方程為y-e=2e(x-1),
即2ex-y-e=0.
故選:C.
點評:本題考查利用導數(shù)研究曲線上某點處的切線方程,過曲線上某點處的切線的斜率,就是函數(shù)在該點處的導數(shù)值,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,拋物線y2=2px(p>0)的焦點為F,斜率k=l的直線l過焦點F,與拋物線交于A、B兩點,若拋物線的準線與x軸交點為N,則tan∠ANF=( 。
A、1
B、
1
2
C、
2
2
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=x2+1在點(1,2)處的切線為l,則直線l上的任意點P與圓x2+y2+4x+3=0上的任意點Q之間的最近距離是( 。
A、
4
5
5
-1
B、
2
5
5
-1
C、
5
-1
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=kx+1與曲線y=ax3+x+b相切于點(1,5),則a-b=( 。
A、-2B、0C、2D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)a、b、c、d滿足(b-lna)2+(c-d+2)2=0,則(a-c)2+(b-d)2的最小值為(  )
A、
2
2
B、
1
2
C、2
D、
9
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(x-2)(1-x),x≤0
lnx,x>0
,若|f(x)|≥a(x-1),則a的取值范圍是( 。
A、(-∞,1]
B、(-∞,-1]
C、[-1,1]
D、[-1,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足1+cos2(2x+3y-1)=
x2+y2+2(x+1)(1-y)
x-y+1
,則xy的最小值為 ( 。
A、
1
25
B、
1
16
C、
1
9
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體三視圖如圖所示,則該幾何體的體積為(  )
A、8-
π
4
B、8-
π
2
C、8-π
D、8-2π

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆寧夏高三上學期期中考試文科數(shù)學試卷(解析版) 題型:選擇題

已知平面向量,如果,那么實數(shù)等于

A.2 B. C. D.

 

查看答案和解析>>

同步練習冊答案