【題目】為了摸清整個(gè)江門大道的交通狀況,工作人員隨機(jī)選取20處路段,在給定的測試時(shí)間內(nèi)記錄到機(jī)動(dòng)車的通行數(shù)量情況如下(單位:輛): 147 161 170 180 163 172 178 167 191 182
181 173 174 165 158 154 159 189 168 169
(Ⅰ)完成如下頻數(shù)分布表,并作頻率分布直方圖;
通行數(shù)量區(qū)間 | [145,155) | [155,165) | [165,175) | [175,185) | [185,195) |
頻數(shù) |
(Ⅱ)現(xiàn)用分層抽樣的方法從通行數(shù)量區(qū)間為[165,175)、[175,185)及[185,195)的路段中取出7處加以優(yōu)化,再從這7處中隨機(jī)選2處安裝智能交通信號(hào)燈,設(shè)所取出的7處中,通行數(shù)量區(qū)間為[165,175)路段安裝智能交通信號(hào)燈的數(shù)量為隨機(jī)變量X(單位:盞),試求隨機(jī)變量X的分布列與數(shù)學(xué)期望E(X).
【答案】解:(Ⅰ)
通行數(shù)量區(qū)間 | [145,155) | [155,165) | [165,175) | [175,185) | [185,195) |
頻數(shù) | 2 | 4 | 8 | 4 | 2 |
(Ⅱ)用分層抽樣的方法抽取7處,則通行數(shù)量區(qū)間為[165,175],
[175,185],及[185,195)的路段應(yīng)分別取4處、2處、1處…
依題意,X的可能取值為0,1,2
利用P(X=k)= ,可得P(X=0)= ,P(X=1)= ,P(X=2)= .
∴隨機(jī)變量X的分布列為:
X | 0 | 1 | 2 |
P |
EX=0+1× +2× = .
【解析】(I)利用已知數(shù)據(jù)即可得出;(II)用分層抽樣的方法抽取7處,即可得出.利用P(X=k)= ,即可得出.
【考點(diǎn)精析】利用頻率分布直方圖和離散型隨機(jī)變量及其分布列對題目進(jìn)行判斷即可得到答案,需要熟知頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),在數(shù)列{bn}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記Tn=a1b1+a2b2+ +anbn,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓的中心為原點(diǎn),長軸在軸上,上頂點(diǎn)為,左、右焦點(diǎn)分別為,線段的中點(diǎn)分別為,且是面積為的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過作直線交橢圓于兩點(diǎn),使,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在,使得成立.
(1)函數(shù)是否屬于集合M?說明理由;
(2)設(shè)函數(shù),求的取值范圍;
(3)已知函數(shù)圖象與函數(shù)的圖象有交點(diǎn),根據(jù)該結(jié)論證明:函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.
(1)已畫出函數(shù)在軸左側(cè)的圖像,如圖所示,請補(bǔ)出完整函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的增區(qū)間;
⑵寫出函數(shù)的解析式和值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓E: (a>b>0)的左右焦點(diǎn)分別為F1、F2 , D為橢圓短軸上的一個(gè)頂點(diǎn),DF1的延長線與橢圓相交于G.△DGF2的周長為8,|DF1|=3|GF1|.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過橢圓E的左頂點(diǎn)A作橢圓E的兩條互相垂直的弦AB、AC,試問直線BC是否恒過定點(diǎn)?若是,求出此定點(diǎn)的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐A﹣BCD中,側(cè)棱AB,AC,AD兩兩垂直,△ABC、△ACD、△ABD的面積分別為 、 、2 ,則三棱錐A﹣BCD的外接球的體積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在R上的偶函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(2﹣t),且x∈(0,1]時(shí),f(x)= ,a=f( ),b=f( ),c=f( ),則( )
A.b<c<a
B.a<b<c
C.c<a<b
D.b<a<c
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com