已知函數(shù)
(Ⅰ)當(dāng)0<a≤1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實(shí)數(shù)a,使f(x)≤x恒成立,若存在,求出實(shí)數(shù)a的取值范圍;若不存在,說(shuō)明理由.
【答案】分析:(Ⅰ)確定函數(shù)f(x)的定義域,求導(dǎo)函數(shù),分類討論,利用導(dǎo)數(shù)的正負(fù)確定取得函數(shù)的單調(diào)區(qū)間;
(Ⅱ)f(x)≤x恒成立可轉(zhuǎn)化為a+(a+1)xlnx≥0恒成立,構(gòu)造函數(shù)φ(x)=a+(a+1)xlnx,則只需φ(x)≥0在x∈(0,+∞)恒成立即可,求導(dǎo)函數(shù),分類討論,即可求出實(shí)數(shù)a的取值范圍.
解答:解:(Ⅰ)函數(shù)f(x)的定義域?yàn)椋?,+∞),…(2分)
(1)當(dāng)0<a<1時(shí),由f′(x)>0得,0<x<a或1<x<+∞,由f′(x)<0得,a<x<1
故函數(shù)f(x)的單調(diào)增區(qū)間為(0,a)和(1,+∞),單調(diào)減區(qū)間為(a,1)…(4分)
(2)當(dāng)a=1時(shí),f′(x)≥0,f(x)的單調(diào)增區(qū)間為(0,+∞)…(5分)
(Ⅱ)f(x)≤x恒成立可轉(zhuǎn)化為a+(a+1)xlnx≥0恒成立,
令φ(x)=a+(a+1)xlnx,則只需φ(x)≥0在x∈(0,+∞)恒成立即可,…(6分)
求導(dǎo)函數(shù)可得:φ′(x)=(a+1)(1+lnx)
當(dāng)a+1>0時(shí),在時(shí),φ′(x)<0,在時(shí),φ′(x)>0
∴φ(x)的最小值為,由,
故當(dāng)時(shí)f(x)≤x恒成立,…(9分)
當(dāng)a+1=0時(shí),φ(x)=-1,φ(x)≥0在x∈(0,+∞)不能恒成立,…(11分)
當(dāng)a+1<0時(shí),取x=1,有φ(1)=a<-1,φ(x)≥0在x∈(0,+∞)不能恒成立,…(13分)
綜上所述當(dāng)時(shí),使f(x)≤x恒成立.…(14分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查分類討論的數(shù)學(xué)思想,考查恒成立問題,同時(shí)考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖北省鄂州市高三(上)摸底數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)0<a<b且f(a)=f(b)時(shí),求證:ab>1;
(2)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第1章 集合與函數(shù)概念》2013年單元測(cè)試卷5(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)0<a<b且f(a)=f(b)時(shí),求證:ab>1;
(2)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省南通市如東縣雙甸高級(jí)中學(xué)高一(上)9月學(xué)情調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)0<a<b且f(a)=f(b)時(shí),求證:ab>1;
(2)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年貴州省高考適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(I)當(dāng)0<a<1且,f′(1)=0時(shí),求f(x)的單調(diào)區(qū)間;
(II)已知且對(duì)|x|≥2的實(shí)數(shù)x都有f'(x)≥0.若函數(shù)y=f′(x)有零點(diǎn),求函數(shù)y=f(x)與函數(shù)y=f′(x)的圖象在x∈(-3,2)內(nèi)的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年廣東省華南師大附中高三綜合測(cè)試數(shù)學(xué)試卷1(理科)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)0<a<b且f(a)=f(b)時(shí),求證:ab>1;
(2)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案