【題目】幾個(gè)月前,成都街頭開(kāi)始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問(wèn)題,比如亂停亂放,或?qū)⒐蚕韱诬囌紴椤八接小钡龋?/span>

為此,某機(jī)構(gòu)就是否支持發(fā)展共享單車隨機(jī)調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計(jì)如下表:

年齡

受訪人數(shù)

5

6

15

9

10

5

支持發(fā)展

共享單車人數(shù)

4

5

12

9

7

3

(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系;

年齡低于35歲

年齡不低于35歲

合計(jì)

支持

不支持

合計(jì)

(Ⅱ)若對(duì)年齡在,的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行調(diào)查,記選中的4人中支持發(fā)展共享單車的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析.

【解析】試題分析:(1)由題意可知a=30,b=10,c=5,d=5,代入:。(2)

年齡在的5個(gè)受訪人中,有4人支持發(fā)展共享單車;年齡在的6個(gè)受訪人中,有5人支持發(fā)展共享單車.隨機(jī)變量的所有可能取值為2,3,4.所以,,.

試題解析:(Ⅰ)根據(jù)所給數(shù)據(jù)得到如下列聯(lián)表:

年齡低于35歲

年齡不低于35歲

合計(jì)

支持

30

10

40

不支持

5

5

10

合計(jì)

35

15

50

根據(jù)列聯(lián)表中的數(shù)據(jù),得到的觀測(cè)值為

∴不能在犯錯(cuò)誤的概率不超過(guò)0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系.

(Ⅱ)由題意,年齡在的5個(gè)受訪人中,有4人支持發(fā)展共享單車;年齡在的6個(gè)受訪人中,有5人支持發(fā)展共享單車.

∴隨機(jī)變量的所有可能取值為2,3,4.

,,,

∴隨機(jī)變量的分布列為

2

3

4

∴隨機(jī)變量的數(shù)學(xué)期望

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(﹣1,4)及圓C:(x﹣2)2+(y﹣3)2=1.則下列判斷正確的序號(hào)為
①點(diǎn)P在圓C內(nèi)部;
②過(guò)點(diǎn)P做直線l,若l將圓C平分,則l的方程為x+3y﹣11=0;
③過(guò)點(diǎn)P做直線l與圓C相切,則l的方程為y﹣4=0或3x+4y﹣13=0;
④一束光線從點(diǎn)P出發(fā),經(jīng)x軸反射到圓C上的最短路程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的離心率為, 過(guò)點(diǎn), 記橢圓的左頂點(diǎn)為.

(1)求橢圓的方程;

(2)設(shè)垂直于軸的直線交橢圓于兩點(diǎn), 試求面積的最大值;

(3)過(guò)點(diǎn)作兩條斜率分別為的直線交橢圓于兩點(diǎn),且, 求證: 直線恒過(guò)一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了探索一種新的教學(xué)模式,進(jìn)行了一項(xiàng)課題實(shí)驗(yàn),甲班為實(shí)驗(yàn)班,乙班為對(duì)比班,甲乙兩班的人數(shù)均為50人,一年后對(duì)兩班進(jìn)行測(cè)試,測(cè)試成績(jī)的分組區(qū)間為[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到兩個(gè)班測(cè)試成績(jī)的頻率分布直方圖:

(1)完成下面2×2列聯(lián)表,你能有97.5%的把握認(rèn)為“這兩個(gè)班在這次測(cè)試中成績(jī)的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)”嗎?并說(shuō)明理由;

成績(jī)小于100分

成績(jī)不小于100分

合計(jì)

甲班

a=

b=

50

乙班

c=24

d=26

50

合計(jì)

e=

f=

100


(2)現(xiàn)從乙班50人中任意抽取3人,記ξ表示抽到測(cè)試成績(jī)?cè)赱100,120)的人數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.
附:K2= ,其中n=a+b+c+d

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.204

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+)(ω>0)的部分圖象如圖所示,下面結(jié)論正確的個(gè)數(shù)是(
①函數(shù)f(x)的最小正周期是2π
②函數(shù)f(x)的圖象可由函數(shù)g(x)=sin2x的圖象向左平移 個(gè)單位長(zhǎng)度得到
③函數(shù)f(x)的圖象關(guān)于直線x= 對(duì)稱
④函數(shù)f(x)在區(qū)間[ ]上是增函數(shù).

A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}當(dāng)n≥2時(shí)滿足 = + ,且a3a5a7= + + =9,Sn是數(shù)列{ }的前n項(xiàng)和,則S4=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)和直線,圓C與直線相切,并且圓心C關(guān)于點(diǎn)的對(duì)稱點(diǎn)在圓C上,直線軸相交于點(diǎn)

(Ⅰ)求圓心C的軌跡E的方程;

(Ⅱ)過(guò)點(diǎn)且與直線不垂直的直線與圓心C的軌跡E相交于點(diǎn)A、B,面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見(jiàn)》,某校計(jì)劃開(kāi)設(shè)八門研學(xué)旅行課程,并對(duì)全校學(xué)生的選擇意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個(gè)學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果整理成條形圖如下.

上圖中,已知課程為人文類課程,課程為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取的學(xué)生作為研究樣本組(以下簡(jiǎn)稱“組M”).

(Ⅰ)在“組M”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?

(Ⅱ)為參加某地舉辦的自然科學(xué)營(yíng)活動(dòng),從“組M”所有選擇自然科學(xué)類課程的同學(xué)中隨機(jī)抽取4名同學(xué)前往,其中選擇課程F或課程H的同學(xué)參加本次活動(dòng),費(fèi)用為每人1500元,選擇課程G的同學(xué)參加,費(fèi)用為每人2000元.

(ⅰ)設(shè)隨機(jī)變量表示選出的4名同學(xué)中選擇課程的人數(shù),求隨機(jī)變量的分布列;

(ⅱ)設(shè)隨機(jī)變量表示選出的4名同學(xué)參加科學(xué)營(yíng)的費(fèi)用總和,求隨機(jī)變量的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,設(shè)ai=2m(i∈N* , 3m﹣2≤i<3m+1,m∈N*),Si=ai+ai+3+ai+6+ai+9+ai+12 , 則滿足Si∈[1000,3000]的i的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案