【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=
(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長.

【答案】
(1)解:cos∠CAD= = =
(2)解:∵cos∠BAD=﹣ ,

∴sin∠BAD= = ,

∵cos∠CAD= ,

∴sin∠CAD= =

∴sin∠BAC=sin(∠BAD﹣∠CAD)=sin∠BADcos∠CAD﹣cos∠BADsin∠CAD= × + × =

∴由正弦定理知 = ,

∴BC= sin∠BAC= × =3


【解析】(1)利用余弦定理,利用已知條件求得cos∠CAD的值.(2)根據(jù)cos∠CAD,cos∠BAD的值分別,求得sin∠BAD和sin∠CAD,進而利用兩角和公式求得sin∠BAC的值,最后利用正弦定理求得BC.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中, 是自然對數(shù)的底數(shù).

(1)當時,求曲線處的切線方程;

2求函數(shù)的單調(diào)減區(qū)間;

3)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬;將四個面都為直角三角形的三棱錐稱之為鱉臑.若三棱錐為鱉臑, 平面, , ,三棱錐的四個頂點都在球的球面上,則球的表面積為( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4;坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點, 軸正半軸為極軸的極坐標中,曲線

(Ⅰ)求直線的普通方程和曲線的直角坐標方程.

(Ⅱ)求曲線上的點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南宋數(shù)學家秦九韶所著《數(shù)學九章》中有“米谷粒分”問題:糧倉開倉收糧,糧農(nóng)送來米1512石,驗得米內(nèi)夾谷,抽樣取米一把,數(shù)得216粒內(nèi)夾谷27粒,則這批米內(nèi)夾谷約(
A.164石
B.178石
C.189石
D.196石

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,(其中, 為自然對數(shù)的底數(shù), …….

1)令,求的單調(diào)區(qū)間;

2)已知處取得極小值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線 為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為

1)分別求曲線的極坐標方程和曲線的直角坐標方程;

2)設直線交曲線, 兩點,交曲線 兩點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在三棱錐A﹣BCD中,AB=CD,且點M,N分別是BC,AD的中點.若直線AB⊥CD,則直線AB與MN所成的角為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)是定義在(0,+∞)上的減函數(shù),滿足f(x)+f(y)=f(xy).
(1)求證: ;
(2)若f(4)=﹣4,解不等式

查看答案和解析>>

同步練習冊答案