已知向量
a
,
b
c
滿(mǎn)足
|a
|=1,|
b
|=2,
c
=
a
+
b
c
a
,則
a
b
的夾角等于(  )
分析:利用向量垂直時(shí),數(shù)量積為0,再利用向量的數(shù)量積公式可得結(jié)論.
解答:解:設(shè)
a
b
的夾角等于α
∵向量
a
,
b
,
c
滿(mǎn)足
|a
|=1,|
b
|=2,
c
=
a
+
b
,
c
a
,
(
a
+
b
)•
a
=
a
2
+
b
a
=1+2×1×cosα=0
∴cosα=-
1
2

∵α∈[0,π]
∴α=120°
故選C.
點(diǎn)評(píng):本題考查向量的數(shù)量積公式,考查學(xué)生的計(jì)算能力,正確運(yùn)用數(shù)量積公式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
α
=(
3
sinωx,cosωx),
β
=(cosωx,cosωx)
,記函數(shù)f(x)=
α
β
,已知f(x)的周期為π.
(1)求正數(shù)ω之值;
(2)當(dāng)x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿(mǎn)sin2B=sinA•sinC,試求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖南省月考題 題型:解答題

已知向量sinωx,cosωx),,記函數(shù)f(x)=,已知f(x)的周期為π.
(1)求正數(shù)ω之值;
(2)當(dāng)x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿(mǎn)sin2B=sinAsinC,試求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南省邵陽(yáng)市洞口四中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知向量sinωx,cosωx),,記函數(shù)f(x)=,已知f(x)的周期為π.
(1)求正數(shù)ω之值;
(2)當(dāng)x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿(mǎn)sin2B=sinA•sinC,試求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江西省宜春市宜豐中學(xué)高二第九次模擬數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知向量sinωx,cosωx),,記函數(shù)f(x)=,已知f(x)的周期為π.
(1)求正數(shù)ω之值;
(2)當(dāng)x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿(mǎn)sin2B=sinA•sinC,試求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量, ,記函數(shù)已知的周期為π.

(1)求正數(shù)之值;

(2)當(dāng)x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿(mǎn)sin,試求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案