已知橢圓的左、右焦點(diǎn)分別是,離心率為.直線與軸,軸分別交于點(diǎn)是直線與橢圓的一個公共點(diǎn),是點(diǎn)關(guān)于直線的對稱點(diǎn).設(shè).
(Ⅰ)證明;
(Ⅱ)若,的周長為,寫出橢圓的方程;
(Ⅲ)確定的值,使得是等腰三角形.
(Ⅰ)證明過程見答案(Ⅱ)橢圓方程為.(Ⅲ)時,為等腰三角形.
(Ⅰ)因?yàn)?img width=39 height=20 src="http://thumb.zyjl.cn/pic1/1899/sx/195/192195.gif">分別是直線與軸,軸的交點(diǎn),所以的坐標(biāo)分別是,.由得這里.
所以點(diǎn)的坐標(biāo)是.由得.
即解得.
(Ⅱ)當(dāng)時,,所以.由的周長為,
得.所以.橢圓方程為.
(Ⅲ)因?yàn)?img width=51 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/19/192219.gif">,所以為鈍角,要使為等腰三角形,必有,即.
設(shè)點(diǎn)到的距離為,由,
得.所以.于是.
即當(dāng)時,為等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左、右焦點(diǎn)分別為,其右準(zhǔn)線上上存在點(diǎn)(點(diǎn)在 軸上方),使為等腰三角形.
⑴求離心率的范圍;
⑵若橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為,求的內(nèi)切圓的方程.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
已知橢圓的左、右焦點(diǎn)分別為,, 點(diǎn)是橢圓的一個頂點(diǎn),△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)分別作直線,交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,,且,證明:直線過定點(diǎn)().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本題滿分14分) 已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中
F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題
(本小題滿分12分)
已知橢圓的左、右焦點(diǎn)分別為、,離心率,右準(zhǔn)線方程為.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過點(diǎn)的直線與該橢圓交于M、N兩點(diǎn),且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com