已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的離心率為
1
2
且經(jīng)過點(diǎn)P(1,
3
2
)
.M為橢圓上的動點(diǎn),以M為圓心,MF2為半徑作圓M.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若圓M與y軸有兩個交點(diǎn),求點(diǎn)M橫坐標(biāo)的取值范圍;
(3)是否存在定圓N,使得圓N與圓M相切?若存在.求出圓N的方程;若不存在,說明理由.
分析:(1)利用橢圓的離心率為
1
2
,可得a=2c,從而b2=a2-c2=3c2,故橢圓的標(biāo)準(zhǔn)方程可設(shè)為:
x2
4c2
+
y2
3c2
=1
,將點(diǎn)P(1,
3
2
)
代入,即可求得橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)M(x0,y0)則半徑r=
(x0-1)2+y02
,圓心到y(tǒng)軸的距離d=|x0|,根據(jù)圓M與y軸有兩個交點(diǎn)及M在橢圓上,即可確定點(diǎn)M橫坐標(biāo)的取值范圍;
(3)存在定圓N:(x+1)2+y2=16,使得圓N與圓M相切,圓心N為橢圓的左焦點(diǎn)F1,利用橢圓的定義,可知兩圓相內(nèi)切.
解答:解:(1)∵e=
c
a
=
1
2
,∴a=2c,
∴b2=a2-c2=3c2
∴橢圓的標(biāo)準(zhǔn)方程可設(shè)為:
x2
4c2
+
y2
3c2
=1

又∵過點(diǎn)P(1,
3
2
)
,∴
1
4c2
+
9
4
3c2
=1

∴c=1
∴橢圓的標(biāo)準(zhǔn)方程為:
x2
4
+
y2
3
 
=1

(2)設(shè)M(x0,y0)則半徑r=
(x0-1)2+y02
,圓心到y(tǒng)軸的距離d=|x0|
若圓M與y軸有兩個交點(diǎn),則有r>d,即有
(x0-1)2+y02
>|x0|
,化簡得y02-2x0+1>0,
∵M(jìn)在橢圓上,∴y02=3-
3
4
x02
,代入上不等式得3x02+8x0-16<0解得:-4<x0
4
3
,
∵-2≤x0≤2,
-2≤x0
4
3

(3)存在定圓N:(x+1)2+y2=16,使得圓N與圓M相切,圓心N為橢圓的左焦點(diǎn)F1,
由橢圓的定義知,|MF1|+|MF2|=2a=4
∴|MF1|=4-|MF2|
∴兩圓相內(nèi)切.
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì),考查圓與圓的位置關(guān)系,考查圓與橢圓知識的綜合,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左、右焦點(diǎn)分別為,其右準(zhǔn)線上上存在點(diǎn)(點(diǎn) 軸上方),使為等腰三角形.

⑴求離心率的范圍;

    ⑵若橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為,求的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,, 點(diǎn)是橢圓的一個頂點(diǎn),△是等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)分別作直線,交橢圓于兩點(diǎn),設(shè)兩直線的斜率分別為,且,證明:直線過定點(diǎn)().

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)     已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中

F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  

(I)求橢圓C1的方程;   (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)

已知橢圓的左、右焦點(diǎn)分別為,離心率,右準(zhǔn)線方程為

(I)求橢圓的標(biāo)準(zhǔn)方程;

(II)過點(diǎn)的直線與該橢圓交于M、N兩點(diǎn),且,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊答案