12.多項式(a+2b-3c)6的展開式中ab2c3的系數(shù)為-6480.(用數(shù)字作答)

分析 把(a+2b-3c)6的展開式看成是6個因式(a+2b-3c)的乘積形式,按照分步相乘原理,求出含ab2c3項的系數(shù)即可.

解答 解:把(a+2b-3c)6的展開式看成是6個因式(a+2b-3c)的乘積形式,
展開式中,含ab2c3項的系數(shù)可以按如下步驟得到:
第一步,從6個因式中任選1個因式,這個因式取a,有C61種取法;
第二步,從剩余的5個因式中任選2個因式,都取2b,有C52種取法;
第三步,把剩余的3個因式中都取-3c,有C33種取法;
根據(jù)分步相乘原理,得;含ab2c3項的系數(shù)是C61×22C52×(-3)3C33=-6480
故答案為:-6480

點評 不同考查了二項式系數(shù)的應用問題,也考查了分步相乘原理的應用問題,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知點A($\sqrt{3}$,0)和P($\sqrt{3}$,t)(t∈R),若曲線x2+y2=3上存在點B使∠APB=60°,則t的最大值為( 。
A.$\sqrt{3}$B.2C.1+$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若變量x,y滿足$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x-y+1≥0}\end{array}\right.$,則z=x+2y的最大值為( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為1:3,且成績分布在[40,100],分數(shù)在80以上(含80)的同學獲獎.按文理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖(見圖).
(1)填寫下面的2×2列聯(lián)表,能否有超過95%的把握認為“獲獎與學生的文理科有關”?
(2)將上述調査所得的頻率視為概率,現(xiàn)從參賽學生中,任意抽取3名學生,記“獲獎”學生人數(shù)為X,求X的分布列及數(shù)學期望.
文科生理科生合計
獲獎5
不獲獎
合計200
附表及公式:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設實數(shù)x,y滿足$\left\{\begin{array}{l}{y≤2x-2}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,則$\frac{y-1}{x+3}$的取值范圍是( 。
A.(-∞,$\frac{1}{5}$]B.[-$\frac{1}{5}$,1]C.(-$\frac{1}{5}$,$\frac{1}{3}$]D.($\frac{1}{3}$,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)y=$\sqrt{x}$lg(3-x)的定義域為( 。
A.(0,3)B.[0,3)C.(0,3]D.[0,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知a>b>0,a+b=1,x=-($\frac{1}{a}$)b,y=logab($\frac{1}{a}$+$\frac{1}$),z=logba,則( 。
A.y<xzB.x<z<yC.z<y<xD.x<y<z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知隨機變量ξ的分布列為:
ξ-1012
Px$\frac{1}{3}$$\frac{1}{6}$y
若$E(ξ)=\frac{1}{3}$,則x+y=$\frac{1}{2}$,D(ξ)=$\frac{11}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)=ex-ax2+1,曲線y=f(x)在x=1處的切線方程為y=bx+2.
(1)求a,b的值;
(2)若方程F(x)=f(x)-mx有兩個極值點x1,x2(x1<x2),x0是x1與x2的等差中項;
(i)求實數(shù)m的取值范圍;
(ii)求證:f′(x0)<0 ( f′(x)為f(x)的導函數(shù)).

查看答案和解析>>

同步練習冊答案