分析:(1)根據(jù)已知條件直接求a
1、a
2、a
3;
(2)通過(guò)(1)猜想a
n,
(3)直接用數(shù)學(xué)歸納法進(jìn)行證明,檢驗(yàn)當(dāng)n=1時(shí),等式成立,假設(shè)n=k(k≥1)時(shí),
ak=-成立,證明當(dāng)n=k+1時(shí),等式也成立.
解答:解:(1)當(dāng)n=1時(shí),
a1=(a1+),可得a
1=1,
當(dāng)n=2時(shí),a1+a2=
(a2+),可得a2=
-1(a
n>0),
當(dāng)n=3時(shí),a1+a2+a3=
(a3+),可得a3=
-(a
n>0),
(2)由(1)猜想:
an=-(n∈N
+)
(3)證明:①當(dāng)n=1時(shí),已證.
②假設(shè)n=k(k≥1)時(shí),
ak=-成立,則當(dāng)n=k+1時(shí),a
k+1=S
k+1-S
k=
(ak+1+)-(ak+),
即
ak+1-=
-(ak+)=
-(-+)=-2
,
∴
ak+1=-.由(1)(2)可知對(duì)n∈N
+,
an=-成立.
點(diǎn)評(píng):本題考查用數(shù)學(xué)歸納法證明等式,證明n=k+1時(shí)等式成立,是解題的難點(diǎn)和關(guān)鍵.