雙曲線
x2
8
-
y2
4
=1
左右焦點分別為F1,F(xiàn)2,若過F1的直線與雙曲線的左支交于A、B兩點,且|AB|是|AF2|與|BF2|的等差中項,則|AB|等于( 。
A.2
2
B.4
2
C.8
2
D.8
由題意可知 2b=4,e=
c
a
=
6
2
,于是 a=2
2
,
∵2|AB|=|AF2|+|BF2|,
∴|AB|+|AF1|+|BF1|=|AF2|+|BF2|,
得|AB|=|AF2|-|AF1|+|BF2|-|BF1|=4a=8
2

故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線
x2
4m2
-
y2
m2
=1的兩漸近線方程為( 。
A.y=±
1
2
x
B.y=±2xC.y=±
1
4
x
D.y=±4x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示的曲線是以銳角△ABC的頂點B、C為焦點,且經(jīng)過點A的雙曲線,若△ABC的內(nèi)角的對邊分別為a,b,c,且a=4,b=6,
csinA
a
=
3
2
,則此雙曲線的離心率為( 。
A.
3+
7
2
B.
3-
7
2
C.3-
7
D.3+
7

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若方程
x2
k+2
+
y2
5-k
=-1
表示雙曲線,則k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知Fz、F2是雙曲線
x2
a2
-
y2
b2
=z(a>a,b>a)
的兩個焦點,P是雙曲線上的一點,則
PFz
PF2
的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,點F2是⊙F1外的一點,點Q是⊙F1上的動點,射線F1Q交線段F2Q的中垂線于P,則點P一定在( 。
A.以F1、F2為焦點,以2|F1Q|為長軸長的橢圓上
B.以F1、F2為焦點,以2|F1Q|為實軸長的雙曲線上
C.以F2為焦點,以F1F2中點為頂點的拋物線上
D.以F1、F2為焦點,以|F1Q|為實軸長的雙曲線上

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設F1,F(xiàn)2是雙曲線x2-
y2
4
=1的左、右兩個焦點,若雙曲線右支上存在一點P,使(
OP
+
OF2
)•
F2P
=0(O為坐標原點),且|PF1|=λ|PF2|,則λ的值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果圓錐曲線
y2
λ+5
-
x2
2-λ
=1
的焦距與實數(shù)λ無關,那么它的焦點坐標是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線的焦點坐標為     

查看答案和解析>>

同步練習冊答案