已知Fz、F2是雙曲線
x2
a2
-
y2
b2
=z(a>a,b>a)
的兩個焦點,P是雙曲線上的一點,則
PFz
PF2
的取值范圍是______.
設(shè)F1(-c,0),F(xiàn)2(c,0),少(x,y),則
F1
=(-c-x,-y),
F2
=(c-x,-y)

F1
F2
=x2+y2-c2

∵少是雙曲線上的一點
x2=72+
72y2
b2

F1
F2
=72+
72y2
b2
+y2-c272-c2
=-b2
F1
F2
的取值范圍是[-b2,+∞)
故答案為:[-b2,+∞)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線C與雙曲線
x2
3
-y2
=1有相同的漸近線,且過點A(
3
,-3),則雙曲線C的標(biāo)準(zhǔn)方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

離心率為
1
2
的橢圓C1與雙曲線C2有相同的焦點,且橢圓長軸的端點、短軸的端點、焦點到雙曲線的一條漸近線的距離依次構(gòu)成等差數(shù)列,則雙曲線C2的離心率等于( 。
A.
15
3
B.
15
5
C.
21
3
D.
21
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

經(jīng)過雙曲線x2-
y2
3
=1
的左焦點F1作傾斜角為
π
6
的弦AB.
(1)求|AB|;
(2)求△F2AB的周長(F2為右焦點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

經(jīng)過點M(4,3),漸近線方程為y=±2x的雙曲線的方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
8
-
y2
4
=1
左右焦點分別為F1,F(xiàn)2,若過F1的直線與雙曲線的左支交于A、B兩點,且|AB|是|AF2|與|BF2|的等差中項,則|AB|等于( 。
A.2
2
B.4
2
C.8
2
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
16
-
y2
9
=1的離心率e=( 。
A.5B.
5
C.
5
2
D.
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點,過F作直線l與一條漸近線平行,直線l與雙曲線交于點M,與y軸交于點N,若
FM
=
1
2
MN
,則雙曲線的離心率為( 。
A.
2
B.
3
C.
5
D.
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的準(zhǔn)線與圓相切,則的值為(     ).
A.B.1C.2D.4

查看答案和解析>>

同步練習(xí)冊答案