已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意的,滿足關(guān)系式
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,求證:對于任意的正整數(shù)n,總有
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,,,對任意成立,令,且是等比數(shù)列.
(1)求實(shí)數(shù)的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)求和:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列中,,,等差數(shù)列中,,且。
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是各項(xiàng)為正數(shù)的等比數(shù)列,且a1=1,a2+a3=6,
(1)求該數(shù)列的通項(xiàng)公式
(2)若,求該數(shù)列的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列的首項(xiàng),公比,數(shù)列前項(xiàng)的積記為.
(1)求使得取得最大值時的值;
(2)證明中的任意相鄰三項(xiàng)按從小到大排列,總可以使其成等差數(shù)列,如果所有這些等差數(shù)列的公差按從小到大的順序依次設(shè)為,證明:數(shù)列為等比數(shù)列.
(參考數(shù)據(jù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足:
(1)求證:數(shù)列為等比數(shù)列;
(2)求證:數(shù)列為遞增數(shù)列;
(3)若當(dāng)且僅當(dāng)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com