已知數(shù)列an的前n項和為Sn,a1=2,nan+1=Sn+n(n+1),
(1)求數(shù)列an的通項公式;
(2)設(shè),如果對一切正整數(shù)n都有bn≤t,求t的最小值.
【答案】分析:(1)由nan+1=Sn+n(n+1)可得(n-1)an=Sn-1+n(n-1)(n≥2)
兩式相減可整理可得,an+1=an+2(n≥2),由a1=2,可得a2=S1+2=4,a2-a1=2
故數(shù)列{an}是以2為首項,以2為公差的等差數(shù)列,由等差數(shù)列的通項公式可求
(2)由(1)可求,Sn=n(n+1),
由數(shù)列的單調(diào)性可知,bk≥bk+1,bk≥bk-1,從而可求數(shù)列{bn}的最大項,由bn≤t恒成立可得t≥bn的最大值,進(jìn)而可求t的最小
解答:解:(1)∵nan+1=Sn+n(n+1)
∴(n-1)an=Sn-1+n(n-1)(n≥2)
兩式相減可得,nan+1-(n-1)an=Sn-Sn-1+2n
即nan+1-(n-1)an=an+2n,(n≥2)
整理可得,an+1=an+2(n≥2)(*)
由a1=2,可得a2=S1+2=4,a2-a1=2適合(*)
故數(shù)列{an}是以2為首項,以2為公差的等差數(shù)列,由等差數(shù)列的通項公式可得,an=2+(n-1)×2=2n
(2)由(1)可得,Sn=n(n+1),

由數(shù)列的單調(diào)性可知,bk≥bk+1,bk≥bk-1
解不等式可得2≤k≤3,k∈N*,k=2,或k=3,
b2=b3=為數(shù)列{bn}的最大項
由bn≤t恒成立可得,則t的最小值
點(diǎn)評:本題主要考查了由數(shù)列的遞推公式求解數(shù)列的通項公式,考查了等差數(shù)列的通項公式的應(yīng)用,在數(shù)列中,恒成立的問題一般都轉(zhuǎn)化為求解數(shù)列的最值問題,而解決此類問題的關(guān)鍵是根據(jù)數(shù)列的單調(diào)性求解數(shù)列的最大(最。╉梿栴}.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an的前n項和為Sn,且a1=1,Sn=n2an(n∈N),
(1)試計算S1,S2,S3,S4,并猜想Sn的表達(dá)式;
(2)證明你的猜想,并求出an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an的前n項和Sn=
32
(an-1)
,n∈N+
(1)求an的通項公式;
(2)設(shè)n∈N+,集合An={y|y=ai,i≤n,i∈N+},B={y|y=4m+1,m∈N+}.現(xiàn)在集合An中隨機(jī)取一個元素y,記y∈B的概率為p(n),求p(n)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列
an
的前n項和為Sn,且Sn=1-an (n∈N*
(I )求數(shù)列
an
的通項公式;
(Ⅱ)已知數(shù)列
bn
的通項公式bn=2n-1,記cn=anbn,求數(shù)列
cn
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an}的前n項和為sn,滿足(p-1)sn=p2-an,其中p為正常數(shù),且p≠1.
(1)求證:數(shù)列{an}為等比數(shù)列,并求出{an}的通項公式;
(2)若存在正整數(shù)M,使得當(dāng)n≥M時,a1a4a7…a3n-2>a36恒成立,求出M的最小值;
(3)當(dāng)p=2時,數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x,y均為整數(shù),求出x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an的前n項和為Sn
(Ⅰ)若數(shù)列an是等比數(shù)列,滿足2a1+a3=3a2,a3+2是a2,a4的等差中項,求數(shù)列an的通項公式;
(Ⅱ)是否存在等差數(shù)列ann∈N*,使對任意n∈N*都有anSn=2n2(n+1)?若存在,請求出所有滿足條件的等差數(shù)列;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案