下列三圖中的多邊形均為正多邊形,M,N是所在邊的中點(diǎn),雙曲線(xiàn)均以圖中的F1,F(xiàn)2為焦點(diǎn),設(shè)圖示①②③中的雙曲線(xiàn)的離心率分別為e1,e2,e3、則e1,e2,e3的大小關(guān)系為( )
A.e1>e2>e3
B.e1<e2<e3
C.e2=e3<e1
D.e1=e3>e2
【答案】分析:根據(jù)題設(shè)條件,分別建立恰當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求出圖示①②③中的雙曲線(xiàn)的離心率e1,e2,e3,然后再判斷e1,e2,e3的大小關(guān)系.
解答:解:①設(shè)等邊三角形的邊長(zhǎng)為2,以底邊為x軸,以底邊的垂直平分線(xiàn)為y軸,建立平面直角坐標(biāo)系,
則雙曲線(xiàn)的焦點(diǎn)為(±1,0),且過(guò)點(diǎn)(,),
∵(,)到兩個(gè)焦點(diǎn)(-1,0),(1,0)的距離分別是,
,c=1,∴
②正方形的邊長(zhǎng)為,分別以?xún)蓷l對(duì)角線(xiàn)為x軸和y軸,建立平面直角坐標(biāo)系,
則雙曲線(xiàn)的焦點(diǎn)坐標(biāo)為(-1,0)和(1,0),且過(guò)點(diǎn)().
∵點(diǎn)()到兩個(gè)焦點(diǎn)(-1,0),(1,0)的距離分別是,
,c=1,∴
③設(shè)正六邊形的邊長(zhǎng)為2,以F1F1所在直線(xiàn)為x軸,以F1F1的垂直平分線(xiàn)為y軸,建立平面直角坐標(biāo)系,
則雙曲線(xiàn)的焦點(diǎn)為(-2,0)和(2,0),且過(guò)點(diǎn)(1,),
∵點(diǎn)(1,)到兩個(gè)焦點(diǎn)(-2,0)和(2,0)的距離分別為2和2,
∴a=-1,c=2,∴
所以e1=e3>e2.故選D.
點(diǎn)評(píng):恰當(dāng)?shù)亟⒆鴺?biāo)系是正確解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)下列三圖中的多邊形均為正多邊形,M,N是所在邊的中點(diǎn),雙曲線(xiàn)均以圖中的F1,F(xiàn)2為焦點(diǎn),設(shè)圖示①②③中的雙曲線(xiàn)的離心率分別為e1,e2,e3、則e1,e2,e3的大小關(guān)系為( 。
A、e1>e2>e3B、e1<e2<e3C、e2=e3<e1D、e1=e3>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列三圖中的多邊形均為正多邊形,M、N是所在邊上的中點(diǎn),雙曲線(xiàn)均以圖中的F1、F2為焦點(diǎn),設(shè)圖①②③中的雙曲線(xiàn)的離心率分別為e1、e2、e3,則(    )

A.e1>e2>e3            B.e1<e2<e3              C.e1=e3<e2            D.e1=e3>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,下列三圖中的多邊形均為正多邊形,M、N是所在邊的中點(diǎn),雙曲線(xiàn)均以圖中的F1,F2為焦點(diǎn),設(shè)圖中的雙曲線(xiàn)的離心率分別為e1,e2,e3,則          (    )

       A.e1>e2>e3 B.e1<e2<e3   C.e1=e3<e2  D.e1=e3>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年度新課標(biāo)高三下學(xué)期數(shù)學(xué)單元測(cè)試4-理科 題型:選擇題

 如圖所示,下列三圖中的多邊形均為正多邊形,M、N是所在邊的中點(diǎn),雙曲線(xiàn)均以圖中的F1,F2為焦點(diǎn),設(shè)圖中的雙曲線(xiàn)的離心率分別為e1,e2,e3,則     (    )

    A.e1>e2>e3 B.e1<e2<e3  C.e1=e3<e2 D.e1=e3>e2

 

查看答案和解析>>

同步練習(xí)冊(cè)答案