【題目】各項均為正數(shù)的等差數(shù)列{an}前n項和為Sn , 首項a1=3,數(shù)列{bn} 為等比數(shù)列,首項b1=1,且b2S2=64,b3S3=960.
(1)求an和bn;
(2)設f(n)= (n∈N*),求f(n)最大值及相應的n的值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,棱柱ABCD﹣A1B1C1D1的底面是菱形.側(cè)棱長為5,平面ABCD⊥平面A1ACC1 , AB=3 ,∠BAD=60°,點E是△ABD的重心,且A1E=4.
(1)求證:平面A1DC1∥平面AB1C;
(2)求二面角B1﹣AC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱與底面垂直,AB=AC=1,AA1=2,且P,Q,M分別是BB1 , CC1 , B1C1的中點,AB⊥AQ.
(1)求證:AB⊥AC;
(2)求證:AQ∥平面A1PM;
(3)求AQ與平面BCC1B1所成角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=3,n(an+1﹣an)=an+1,n∈N*若對于任意的a∈[﹣1,1],n∈N* , 不等式 ﹣2at+1恒成立,則實數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個大型噴水池的中央有一個強力噴水柱,為了測量噴水柱噴水的高度,某人在噴水柱正西方向的點A測的水柱頂端的仰角為45°,沿點A向北偏東30°前進100m到達點B.在B點測得水柱頂端的仰角為30°,則水柱的高度是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=3,a2=5,其前n項和為Sn滿足Sn+Sn﹣2=2Sn﹣1+2n﹣1(n≥3,n∈N*)
(1)試求數(shù)列{an}的通項公式
(2)令bn= ,Tn是數(shù)列{bn}的前n項和.證明:對任意給定的m∈(0, ),均存在n0∈N*,使得當n≥n0時,Tn>m恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】鈍角△OAB三邊的比為2 :2 :( ﹣ ),O為坐標原點,A(2,2 )、B(a,a),則a的值為( )
A.2
B.
C.2 或
D. +
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在圓內(nèi)接△ABC,A,B,C所對的邊分別為a,b,c,滿足acosC+ccosA=2bcosB.
(1)求B的大。
(2)若點D是劣弧 上一點,AB=3,BC=2,AD=1,求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com