解:(Ⅰ)f
2(x)=1-x+
-
,則f
2′(x)=-1+x-x
2=-(x-
)
2-
<0
∴函數(shù)f
2(x)在R上單調(diào)減
∵f
2(1)>0,f
2(2)<0
∴f
2(x)=0的實(shí)數(shù)解的個(gè)數(shù)是1個(gè);
(Ⅱ)f
n(x)=0的實(shí)數(shù)解的個(gè)數(shù)是1個(gè)
求導(dǎo)函數(shù)可得f
n′(x)=-1+x-x
2+…+x
2n-3-x
2n-2.
(1)若x=-1,則f
n′(x)=-(2n-1)<0.
(2)若x=0,則f
n′(x)=-1<0.
(3)若x≠-1,且x≠0時(shí),則f
n′(x)=-
.
①當(dāng)x<-1時(shí),x+1<0,x
2n-1+1<0,∴f
n′(x)<0.
②當(dāng)x>-1時(shí),f
n′(x)<0
綜合(1),(2),(3),得f
n′(x)<0,
即f
n(x)在R單調(diào)遞減.
又f
n(0)=1>0,f
n(2)=(1-2)+(
)+…+(
-
)<0
所以f
n(x)在(0,2)有唯一實(shí)數(shù)解,從而f
n(x)在R有唯一實(shí)數(shù)解.
綜上,f
n(x)=0有唯一實(shí)數(shù)解.
分析:(Ⅰ)對函數(shù)求導(dǎo),導(dǎo)函數(shù)是一個(gè)二次函數(shù),配方整理看出導(dǎo)函數(shù)一定小于0,得到函數(shù)的單調(diào)性
(II)首求出導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的正負(fù)看出函數(shù)的單調(diào)性,從而可得交點(diǎn)的個(gè)數(shù).
點(diǎn)評(píng):本題考查函數(shù)與方程的關(guān)系和導(dǎo)數(shù)的應(yīng)用,本題解題的關(guān)鍵是由導(dǎo)數(shù)看出函數(shù)的單調(diào)性,根據(jù)單調(diào)性確定函數(shù)與橫軸的交點(diǎn)個(gè)數(shù).分類研究函數(shù)的單調(diào)性體現(xiàn)了分類討論的思想