由a1=1,an+1=
an
3an+1
給出的數(shù)列{an}的第34項是( 。
A、
1
100
B、100
C、
34
103
D、
1
4
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)遞推公式,利用取倒數(shù)法,得到數(shù)列{
1
an
}是等差數(shù)列,即可得到結(jié)論.
解答: 解:∵a1=1,an+1=
an
3an+1
,
∴等式兩邊取倒數(shù)得
1
an+1
=
3an+1
an
=3+
1
an

1
an+1
-
1
an
=3
,
即數(shù)列{
1
an
}是公差d=3的等差數(shù)列,首項為1,
1
an
=1+3(n-1)=3n-2,
則an=
1
3n-2
,
則a34=
1
3×34-2
=
1
100

故選:A
點評:本題主要考查數(shù)列項的計算,利用取倒數(shù)法,得到數(shù)列{
1
an
}是公差d=3的等差數(shù)列是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

將全體正整數(shù)按如圖規(guī)律排成一個三角形數(shù)陣,若數(shù)2014在圖中第m行從左往右數(shù)的第n位.則(m,n)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)i為虛數(shù)單位,則復(fù)數(shù)
5-6i
i
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F(0,1),直線l:y=-1,P為平面上的動點,過點P作直線l的垂線,垂足為Q,且
QP
QF
=
FP
FQ
,動點P的軌跡為C,已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,設(shè)|DA|=l1,|DB|=l2,則
l1
l2
+
l2
l1
的最大值為( 。
A、2
B、3
C、2
2
D、3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一半徑為r的圓內(nèi)切于半徑為3r、圓心角為α(0<α<
π
2
)的扇形,則該圓的面積與該扇形的面積之比為( 。
A、3:4B、2:3
C、1:2D、1:3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為R,f(-1)=2,對任意x∈R,f′(x)>2,則f(x)>2x+4的解集為(  )
A、(-1,1)
B、(-1,+∞)
C、(-∞,-1)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列關(guān)系式中,正確的是(  )
A、(sinx)′=cosx
B、(sinx)′=-cosx
C、(cosx)′=cosx
D、(cosx)′=sinsx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在某縣臨時客車?空,每天均有上、中、下等級的客車各一輛開往城區(qū).某天李先生準備從該站點前往城區(qū)辦事,但他不知道客車的車況,也不知道發(fā)車順序,為了盡可能乘到上等車,他采取如下策略:先放過第一輛,如果第二輛比第一輛好,則上第二輛,否則上第三輛,那么李先生乘到上等車的概率為( 。
A、
1
3
B、
1
4
C、
1
2
D、
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的極坐標方程為ρ=
4
2
cos(θ+
π
4
)
,點P的直角坐標為(
3
cosθ
,sinθ),求點P到直線l距離的最大值及最小值.

查看答案和解析>>

同步練習冊答案