先將函數(shù)y=f(x)的圖象向右移
π
6
個(gè)單位,再將所得的圖象作關(guān)于直線x=
π
4
的對(duì)稱變換,得到y=sin(-2x+
π
3
)
的函數(shù)圖象,則f(x)的解析式是( 。
A.y=sin(-2x+
π
3
)
B.y=sin(-2x-
π
3
)
C.y=sin(2x-
π
3
)
D.y=sin(2x+
π
3
)
設(shè)函數(shù)為y=g(x)的圖象與函數(shù)y=sin(-2x+
π
3
)的圖象關(guān)于直線x=
π
4
對(duì)稱,
則g(x)=sin[-2(
π
2
-x)+
π
3
]=sin(2x-
3
),
∴f(x)=g(x+
π
6
)=sin[2(x+
π
6
)-
3
]=sin(2x-
π
3
),
故選:C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

把函數(shù)y=2+cos2x的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),然后向左平移1個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度,得到的函數(shù)的解析式是(  )
A.y=cos(x+1)B.y=cos(x-1)C.y=cos(4x+4)D.y=cos(4x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)=Asin(ωx+ϕ)的導(dǎo)函數(shù)f′(x)在一個(gè)周期內(nèi)的圖象如右圖,則下列函數(shù)f(x)的解析式中,滿足條件的是( 。
A.y=sin(2x+
π
6
)
B.y=sin(2x+
π
3
)
C.y=2sin(2x+
π
6
)
D.y=2sin(2x+
π
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=sin(2x+ϕ)(-π<ϕ<0),y=f(x)圖象的一條對(duì)稱軸是直線x=
π
8

(Ⅰ)求ϕ;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=3sin(2x-
π
3
)-2圖象的一條對(duì)稱軸是( 。
A.x=
π
6
B.x=
π
3
C.x=
12
D.x=
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù)f(x)=Asin(ωx+φ),x∈R(A>0,ω>0,|φ|<
π
2
)
的一段圖象如圖5所示:將y=f(x)的圖象向右平移m(m>0)個(gè)單位,可得到函數(shù)y=g(x)的圖象,且圖象關(guān)于原點(diǎn)對(duì)稱,g(
π
2013
)>0

(1)求A、ω、φ的值;
(2)求m的最小值,并寫出g(x)的表達(dá)式;
(3)若關(guān)于x的函數(shù)y=g(
tx
2
)
在區(qū)間[-
π
3
π
4
]
上最小值為-2,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2010)的值為( 。
A.2B.
2
C.2-
2
D.2+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

要得到函數(shù)y=3sin(2x+
π
3
)的圖象,只要把函數(shù)y=3sin2x圖象( 。
A.向右平移
π
3
個(gè)單位
B.向左平移
π
3
個(gè)單位
C.向右平移
π
6
個(gè)單位
D.向左平移
π
6
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),且,則下列關(guān)系成立的是(   ).
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案