求下列各題中的函數(shù)f(x)的解析式.
(1) 已知f(+2)=x+4,求f(x);
(2) 已知f=lgx,求f(x);
(3) 已知函數(shù)y=f(x)滿足2f(x)+f=2x,x∈R且x≠0,求f(x);
(4) 已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)=f(x)+2x,求f(x).
(1)f(x)=x2-4(x≥2)(2)f(x)=lg(x>1).(3)f(x)=x-(4)f(x)=x2-x+1.
(1) (解法1)設(shè)t=+2,則=t-2,即x=(t-2)2,
∴  f(t)=(t-2)2+4(t-2)=t2-4,
∴  f(x)=x2-4(x≥2).
(解法2)∵  f(+2)=(+2)2-4,∴  f(x)=x2-4(x≥2).
(2) 設(shè)t=+1,則x=,∴  f(t)=lg,即f(x)=lg(x>1).
(3) 由2f(x)+f=2x,①將x換成,則換成x,得2f+f,②
①×2-②,得3f(x)=4x-,得f(x)=x-.
(4) ∵  f(x)是二次函數(shù),∴ 設(shè)f(x)=ax2+bx+c(a≠0).由f(0)=1,得c=1.
由f(x+1)=f(x)+2x,得a(x+1)2+b(x+1)+1=(ax2+bx+1)+2x,
整理,得(2a-2)x+(a+b)=0,由恒等式原理,知
∴f(x)=x2-x+1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

科學(xué)研究證實,二氧化碳等溫室氣體的排放(簡稱碳排放)對全球氣候和生態(tài)環(huán)境產(chǎn)生了負面影響.環(huán)境部門對A市每年的碳排放總量規(guī)定不能超過550萬噸,否則將采取緊急限排措施.已知A市2013年的碳排放總量為400萬噸,通過技術(shù)改造和倡導(dǎo)低碳生活等措施,此后每年的碳排放量比上一年的碳排放總量減少10%.同時,因經(jīng)濟發(fā)展和人口增加等因素,每年又新增加碳排放量m萬噸(m>0).
(1)求A市2015年的碳排放總量(用含m的式子表示);
(2)若A市永遠不需要采取緊急限排措施,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若上存在零點,求實數(shù)的取值范圍;
(2)當(dāng)時,若對任意的,總存在使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù),若,則的值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商場若將進貨單價為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)準備采用提高售價,減少進貨量的辦法來增加利潤,已知這種商品每件銷售價提高1元,銷售量就要減少10件,問該商場將銷售價每件定為多少元時,才能使得每天所賺的利潤最多?銷售價每件定為多少元時,才能保證每天所賺的利潤在300元以上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司為一家制冷設(shè)備廠設(shè)計生產(chǎn)某種型號的長方形薄板,其周長為4m.這種薄板須沿其對角線折疊后使用.如圖所示,ABCD(AB>AD)為長方形薄板,沿AC折疊后AB′交DC于點P.當(dāng)△ADP的面積最大時最節(jié)能,凹多邊形ACB′PD的面積最大時制冷效果最好.
(1)設(shè)AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;
(2)若要求最節(jié)能,應(yīng)怎樣設(shè)計薄板的長和寬?
(3)若要求制冷效果最好,應(yīng)怎樣設(shè)計薄板的長和寬?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=x3+x2-2x-2的一個正數(shù)零點附近的函數(shù)值用二分法計算,其參考數(shù)據(jù)如下:
f(1)=-2
f(1.5)=0.625
f(1.25)=-0.984
f(1.375)=-0.260
f(1.4375)=0.162
f(1.40625)=-0.054
那么方程x3+x2-2x-2=0的一個近似根為________(精確到0.1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=則不等式f(x)>f(1)的解集是(  )
A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)
C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=,求f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值.

查看答案和解析>>

同步練習(xí)冊答案