某商場若將進(jìn)貨單價(jià)為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)準(zhǔn)備采用提高售價(jià),減少進(jìn)貨量的辦法來增加利潤,已知這種商品每件銷售價(jià)提高1元,銷售量就要減少10件,問該商場將銷售價(jià)每件定為多少元時(shí),才能使得每天所賺的利潤最多?銷售價(jià)每件定為多少元時(shí),才能保證每天所賺的利潤在300元以上?
4-<x<4+.
設(shè)每件提高x元(0≤x≤10),即每件獲利潤(2+x)元,每天可銷售(100-10x)件,設(shè)每天獲得總利潤為y元,由題意有y=(2+x)(100-10x)=-10x2+80x+200=-10(x-4)2+360.所以當(dāng)x=4時(shí),ymax=360元,即當(dāng)定價(jià)為每件14元時(shí),每天所賺利潤最多.
要使每天利潤在300元以上,則有-10x2+80x+200>300,即x2-8x+10<0,解得4-<x<4+.故每件定價(jià)在(14-)元到(14+)元之間時(shí),能確保每天賺300元以上.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列四個(gè)命題:
①方程若有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則
②函數(shù)是偶函數(shù),但不是奇函數(shù);
③函數(shù)的值域是,則函數(shù)的值域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824041213488394.png" style="vertical-align:middle;" />;
④一條曲線和直線的公共點(diǎn)個(gè)數(shù)是,則的值不可能是
其中正確的有________________(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)P(x,y)為函數(shù)y=x2-1(x>)圖象上一動(dòng)點(diǎn),記m=,則當(dāng)m最小時(shí),點(diǎn)P的坐標(biāo)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求下列各題中的函數(shù)f(x)的解析式.
(1) 已知f(+2)=x+4,求f(x);
(2) 已知f=lgx,求f(x);
(3) 已知函數(shù)y=f(x)滿足2f(x)+f=2x,x∈R且x≠0,求f(x);
(4) 已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)=f(x)+2x,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某地方政府在某地建一座橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩).經(jīng)預(yù)測,一個(gè)橋墩的費(fèi)用為256萬元,相鄰兩個(gè)橋墩之間的距離均為x,且相鄰兩個(gè)橋墩之間的橋面工程費(fèi)用為(1+)x萬元,假設(shè)所有橋墩都視為點(diǎn)且不考慮其他因素,記工程總費(fèi)用為y萬元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=1280米時(shí),需要新建多少個(gè)橋墩才能使y最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)=x3cosx+1.若f(a)=11,則f(-a)=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=x2+lnx4的零點(diǎn)所在的區(qū)間是(   )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),若,,則的大小關(guān)系為___________.

查看答案和解析>>

同步練習(xí)冊答案