(1)已知
(2)已知的值.
(3)設(shè)
【答案】分析:(1)先根據(jù)α,β的范圍求得sinα和sin(α+β)進(jìn)而根據(jù)兩角和公式求得答案.
(2)先求得sin(x+),進(jìn)而求得tan(x+),根據(jù)正切的兩角和公式求得tanx,進(jìn)而根據(jù)萬能公式求得sin2x和cos2x,代入中即可.
(3)先根據(jù)α,β的范圍求得sin(α-)和cos(-β),進(jìn)而根據(jù)兩角和公式求得cos,進(jìn)而根據(jù)倍角公式求得cos(α+β).
解答:解:(1)∵
∴sinα==,sin(α+β)==
∴sinβ=sin(α+β-α)=sin(α+β)cosα-cos(α+β)sinα=×+×=
(2)∵
<x+<2π
∴sin(x+)=-=-
∴tan(x+)==
∴tanx=7
∴sin2x==,cos2x==-
==-
(3)∵
∴sin(α-)==,cos(-β)==
∴cos=cos(α--+β)=cos(α-)cos(-β)+sin(α-)sin(-β)=-×+×=
∴cos(α+β)=2cos2-1=-
點評:本題主要考查了利用三角函數(shù)的基本公式化簡求值.解題的時候要特別注意三角函數(shù)值的正負(fù)號.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a,b,c為實數(shù),證明a,b,c均為正數(shù)的充要條件是
a+b+c>0
ab+bc+ca>0
abc>0
;
(2)已知方程x3+px2+qx+r=0的三根α,β,γ都是實數(shù),證明α,β,γ是一個三角形的三邊的充要條件是
p<0,q>0,r<0
p3>4pq-8r

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)(1)已知函數(shù)f(x)=x2+mx+3,當(dāng)x∈[-2,2]時,f(x)≥m恒成立,求實數(shù)m的取值范圍.
(2)已知函數(shù)f(x)=x2+mx+3,當(dāng)至少有一個x∈[-2,2]時,使f(x)≥m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=xm-
4x
,且f(4)=3.判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明;
(2)已知函數(shù)y=lg(-x2+4x-3)的定義域為M,求函數(shù)f(x)=4x-2x+3+4(x∈M)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知x,y,z∈R,且x+y+z=8,x2+y2+z2=24,求證:
4
3
≤x≤4,
4
3
≤y≤4,
4
3
≤z≤4

(2)已知a1,b1,x1,x2∈R+,ab=1,x1+x2=2,求證:(ax1+bx2)(bx1+ax2)≥4
(3)已知a.b.c.d∈R+且a+b+c+d=1,求證:
1
a
+
1
b
+
1
c
+
1
d
≥16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的函數(shù)f(x),如果對任意x∈(0,+∞),恒有f(kx)=kf(x)(k≥2,k∈N*)成立,則稱f(x)為k階縮放函數(shù).
(1)已知函數(shù)f(x)為二階縮放函數(shù),且當(dāng)x∈(1,2]時,f(x)=1+log
1
2
x
,求f(2
2
)
的值;
(2)已知函數(shù)f(x)為二階縮放函數(shù),且當(dāng)x∈(1,2]時,f(x)=
2x-x2
,求證:函數(shù)y=f(x)-x在(1,8)上無零點;
(3)已知函數(shù)f(x)為k階縮放函數(shù),且當(dāng)x∈(1,k]時,f(x)的取值范圍是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案