如圖,已知常數(shù)a>0,在矩形ABCD中,AB=4,BC=4a,O為AB的中點(diǎn),點(diǎn)E、F、G分別在BC、CD、DA上移動(dòng),且
BE
BC
=
CF
CD
=
DG
DA
,P為GE與OF的交點(diǎn),建立如圖坐標(biāo)系,求P點(diǎn)的軌跡方程.
分析:根據(jù)如圖坐標(biāo)系,按題意寫出A,B,C,D四點(diǎn)的坐標(biāo),進(jìn)而根據(jù)
BE
BC
=
CF
CD
=
DG
DA
解出E,F(xiàn),G三點(diǎn)的坐標(biāo) 參數(shù)表示,求出OF與GE兩條直線的方程,兩者聯(lián)立即可求出點(diǎn)P的坐標(biāo)滿足的參數(shù)方程,消去參數(shù),得到點(diǎn)P的軌跡方程.
解答:解:如圖,按題意有A(-2,0),B(2,0),C(2,4a),D(-2,4a).
設(shè)
BE
BC
=
CF
CD
=
DG
DA
=k(0≤k≤1)

由此有E(2,4ak),F(xiàn)(2-4k,4a),G(-2,4a-4ak).
直線OF的方程為:2ax+(2k-1)y=0,①
直線GE的方程為:-a(2k-1)x+y-2a=0②
從①,②消去參數(shù)k,
得點(diǎn)P(x,y)坐標(biāo)滿足方程2a2x2+y2-2ay=0,(矩形內(nèi)部).
點(diǎn)評(píng):考查解析法求點(diǎn)的軌跡方程,本題在做題時(shí)引入了參數(shù)k,故得到的軌跡方程為參數(shù)方程,需要消去參數(shù)得到軌跡方程,又當(dāng)字母的取值范圍對(duì)曲線的形狀有影響時(shí),要對(duì)其范圍進(jìn)行討論以確定軌跡的具體性狀.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:河南省開封市2009屆高三年級(jí)第一次模擬考試、數(shù)學(xué)試題(文科) 題型:044

如圖,已知雙曲線(a>0,b>0)其右準(zhǔn)線交x軸于點(diǎn)A,雙曲線虛軸的下端點(diǎn)為B,過雙曲線的右焦點(diǎn)F(c,0)作垂直于x軸的直線交雙曲線于點(diǎn)P,若點(diǎn)D滿足:(O為原點(diǎn))且(λ≠0)

(Ⅰ)求雙曲線的離心率;?

(Ⅱ)若a=2,過點(diǎn)B的直線l交雙曲線于M、N兩點(diǎn),問在y軸上是否存在定點(diǎn)C,使為常數(shù),若存在,求出C點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省開封市2009屆高三年級(jí)第一次模擬考試、數(shù)學(xué)試題(理科) 題型:044

如圖,已知雙曲線(a>0,b>0)其右準(zhǔn)線交x軸于點(diǎn)A,雙曲線虛軸的下端點(diǎn)為B,過雙曲線的右焦點(diǎn)F(c,0)作垂直于x軸的直線交雙曲線于點(diǎn)P,若點(diǎn)D滿足:(O為原點(diǎn))且(λ≠0)

(Ⅰ)求雙曲線的離心率;

(Ⅱ)若a=2,過點(diǎn)B的直線l交雙曲線于M、N兩點(diǎn),問在y軸上是否存在定點(diǎn)C,使為常數(shù),若存在,求出C點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶一中高二(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知常數(shù)a>0,在矩形ABCD中,AB=4,BC=4a,O為AB的中點(diǎn),點(diǎn)E、F、G分別在BC、CD、DA上移動(dòng),且,P為GE與OF的交點(diǎn),建立如圖坐標(biāo)系,求P點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省開封市2009屆高三第一次質(zhì)量檢測(cè)(理) 題型:解答題

 

如圖,已知雙曲線 (a>0,b>0)其右準(zhǔn)線交x軸于點(diǎn)A,雙曲線虛軸的下端點(diǎn)為B,過雙曲線的右焦點(diǎn)F(c,0)作垂直于x軸的直線交雙曲線于點(diǎn)P,若點(diǎn)D滿足:(O為原點(diǎn))且(λ≠0)

(Ⅰ)求雙曲線的離心率;

(Ⅱ)若a=2,過點(diǎn)B的直線l交雙曲線于M、N兩點(diǎn),

問在y軸上是否存在定點(diǎn)C,使?為常數(shù),

若存在,求出C點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案