【題目】已知.
(1)求函數(shù)的最小正周期和對稱軸方程;
(2)若,求的值域.
【答案】(1)對稱軸為,最小正周期;(2)
【解析】
(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進(jìn)行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.
(1)
令,則
的對稱軸為,最小正周期;
(2)當(dāng)時(shí),,
因?yàn)?/span>在單調(diào)遞增,在單調(diào)遞減,
在取最大值,在取最小值,
所以,
所以.
【點(diǎn)睛】
本題考查正弦函數(shù)圖像的性質(zhì),考查周期性,對稱性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應(yīng)用,屬于基礎(chǔ)題.
【題型】解答題
【結(jié)束】
21
【題目】已知等比數(shù)列的前項(xiàng)和為,公比,,.
(1)求等比數(shù)列的通項(xiàng)公式;
(2)設(shè),求的前項(xiàng)和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次函數(shù)的最大值為,其圖象的對稱軸為,且與軸兩個(gè)交點(diǎn)的橫坐標(biāo)的平方和為.
(1)求該一元二次函數(shù);
(2)要將該函數(shù)圖象的頂點(diǎn)平移到原點(diǎn),請說出平移的方式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的左右焦點(diǎn)分別為,與軸正半軸交于點(diǎn),若為等腰直角三角形,且直線被圓所截得的弦長為2.
(1)求橢圓的方程;
(2)直線:與橢圓交于點(diǎn),線段的中點(diǎn)為,射線與橢圓交于點(diǎn),點(diǎn)為的重心,求證:的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,點(diǎn),分別是,的中點(diǎn),則下列說法正確的是( )
A. B. 與所成角為
C. 平面 D. 與平面所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的四項(xiàng)參賽作品,只評一項(xiàng)一等獎(jiǎng),在評獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:
甲說:“或作品獲得一等獎(jiǎng)”; 乙說:“作品獲得一等獎(jiǎng)”;
丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”; 丁說:“作品獲得一等獎(jiǎng)”.
若這四位同學(xué)只有兩位說的話是對的,則獲得一等獎(jiǎng)的作品是( )
A. 作品 B. 作品 C. 作品 D. 作品
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若a,b,c∈R,f(a),f(b),f(c)為某一個(gè)三角形的邊長,則實(shí)數(shù)m的取值范圍是( )
A.[ ,1]
B.[0,1]
C.[1,2]
D.[ ,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記為虛數(shù)集,設(shè),則下列類比所得的結(jié)論正確的是__________.
①由,類比得
②由,類比得
③由,類比得
④由,類比得
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com