某商場(chǎng)舉行的“三色球”購(gòu)物摸獎(jiǎng)活動(dòng)規(guī)定:在一次摸獎(jiǎng)中,摸獎(jiǎng)?wù)邚难b有個(gè)紅球、個(gè)藍(lán)球、6個(gè)白球的袋中任意摸出4個(gè)球.根據(jù)摸出個(gè)球中紅球與藍(lán)球的個(gè)數(shù),設(shè)一、二、三等獎(jiǎng)如下:

獎(jiǎng)級(jí)

摸出紅、藍(lán)球個(gè)數(shù)

獲獎(jiǎng)金額

一等獎(jiǎng)

3紅1藍(lán)

200元

二等獎(jiǎng)

3紅1白

50元

三等獎(jiǎng)

2紅1藍(lán)或2紅2白

10元

 

其余情況無獎(jiǎng)且每次摸獎(jiǎng)最多只能獲得一個(gè)獎(jiǎng)級(jí).

(1)求一次摸獎(jiǎng)恰好摸到1個(gè)紅球的概率;

(2)求摸獎(jiǎng)?wù)咴谝淮蚊?jiǎng)中獲獎(jiǎng)金額的分布列與期望.

 

(1);(2)分布列見解析,

【解析】

試題分析:

解題思路:(1)利用超幾何分布的概率公式求解即可;(2)寫出獲獎(jiǎng)金額的所有可能取值,利用古典概型的概率公式求出各自概率,列出表格,即得分布列,再利用期望公式求其期望.

規(guī)律總結(jié):以圖表給出的統(tǒng)計(jì)題目一般難度不大,主要考查頻率直方圖、莖葉圖、頻率分布表給出;抽樣方法要注意各自的特點(diǎn);古典概型是一種重要的概率模型,其關(guān)鍵是正確列舉基本事件.

試題解析:(1)

(2)

X

0

10

50

200

P(X)

.

考點(diǎn):1.超幾何分布;2.古典概型;3.隨機(jī)變量的分布列與期望.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆云南省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知是虛數(shù)單位,,則=( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆云南省云龍縣高二下學(xué)期期末考試試卷理科數(shù)學(xué)試卷(解析版) 題型:選擇題

4.的展開式中的常數(shù)項(xiàng)是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆云南省云龍縣高二下學(xué)期期末考試試卷文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù) ,記則 ( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆云南省云龍縣高二下學(xué)期期末考試試卷文科數(shù)學(xué)試卷(解析版) 題型:選擇題

在復(fù)平面上,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于 ( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆上海市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

一個(gè)圓柱形的罐子半徑是4米,高是9米,將其平放,并在其中注入深2米的水,截面如圖所示,水的體積是( )平方米.

A. B. C. D.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆上海市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

雙曲線的頂點(diǎn)到其漸近線的距離等于_________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆上海市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

在棱長(zhǎng)為1的正方體盒子里有一只蒼蠅,蒼蠅為了緩解它的無聊,決定要考察這個(gè)盒子的每一個(gè)角,它從一個(gè)角出發(fā)并回到原處,并且每個(gè)角恰好經(jīng)過一次,為了從一個(gè)角到另一個(gè)角,它或直線飛行,或者直線爬行,蒼蠅的路徑最長(zhǎng)是____________.(蒼蠅的體積不計(jì))

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆上海市高二下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,AB是底面半徑為1的圓柱的一條母線,O為下底面中心,BC是下底面的一條切線。

(1)求證:OB⊥AC;

(2)若AC與圓柱下底面所成的角為30°,OA=2。求三棱錐A-BOC的體積。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案