要得到函數(shù)y=sin(2x-
π
3
)
的圖象,可以將函數(shù)y=sin2x圖象經(jīng)何種變換得到( 。
A、右移
π
6
單位
B、右移
π
3
單位
C、左移
π
6
單位
D、左移
π
3
單位
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)三角函數(shù)解析式之間的關(guān)系即可得到結(jié)論.
解答: 解:∵y=sin(2x-
π
3
)=sin2(x-
π
6
),
∴將函數(shù)y=sin2x圖象向右平移
π
6
單位,即可,
故選:A
點(diǎn)評(píng):本題主要考查三角函數(shù)圖象之間的關(guān)系,根據(jù)三角函數(shù)解析式之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-x2+2ax(x≥1)
2ax-1(x<1)
,若存在兩個(gè)不相等的實(shí)數(shù)x1,x2,使得f(x1)=f(x2),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知A=75°,B=45°,b=4,則c=( 。
A、
6
B、2
6
C、4
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與向量
a
=(
3
-1,
3
+1)夾角角為
π
4
的單位向量是( 。
A、(-
1
2
3
2
)或(
3
2
,
1
2
B、(-
1
2
,-
3
2
)或(
1
2
,-
3
2
C、(-
1
2
,-
3
2
)或(-
1
2
,
3
2
D、(
1
2
,
3
2
)或(-
3
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了得到函數(shù)y=sin(2x+2)的圖象,只需把函數(shù)y=sin2x的圖象上所有的點(diǎn)( 。
A、向左平行移動(dòng)2個(gè)單位長(zhǎng)度
B、向右平行移動(dòng)2個(gè)單位長(zhǎng)度
C、向左平行移動(dòng)1個(gè)單位長(zhǎng)度
D、向右平行移動(dòng)1個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A,B,C所對(duì)的邊分別為a,b,c,且a=3,c=8,B=60°,則△ABC的周長(zhǎng)是( 。
A、18B、19C、16D、17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,a=2,∠A=60°,∠C=45°,求∠B,c,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù) f(x)=
2x-1
2x+1

(1)判斷函數(shù)的奇偶性;  
(2)求該函數(shù)的值域;  
(3)解關(guān)于x的不等式f(2x-1)<
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列有關(guān)命題的說(shuō)法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、“x=-1”是“x2-5x-6=0”的必要不充分條件
C、命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D、命題“若x=y,則cosx=cosy”的逆否命題為真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案