【題目】下列函數(shù)既是奇函數(shù)又在(﹣1,1)上是減函數(shù)的是(  )

A. B.

C. yx1D. ytanx

【答案】B

【解析】

對(duì)各選項(xiàng)逐一判斷即可,

利用上為增函數(shù),上為減函數(shù),即可判斷A選項(xiàng)不滿(mǎn)足題意,

,即可判斷其在遞增,結(jié)合復(fù)合函數(shù)的單調(diào)性判斷法則即可判斷B選項(xiàng)滿(mǎn)足題意

對(duì)于C,D,由初等函數(shù)性質(zhì),直接判斷其不滿(mǎn)足題意.

解:根據(jù)題意,依次分析選項(xiàng):

對(duì)于A,上為增函數(shù),上為減函數(shù),所以y3x3x)在R上為增函數(shù),不符合題意;

對(duì)于B,所以是奇函數(shù),

,則,兩個(gè)函數(shù)復(fù)合而成

,它在上單調(diào)遞增

所以既是奇函數(shù)又在(﹣11)上是減函數(shù),符合題意,

對(duì)于C,yx1是反比例函數(shù),是奇函數(shù),但它在(﹣1,1)上不是減函數(shù),不符合題意;

對(duì)于D,ytanx為正切函數(shù),是奇函數(shù),但在(﹣1,1)上是增函數(shù),不符合題意;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x-1|+|x-2|.

(1)求不等式f(x)≥3的解集;

(2)若存在實(shí)數(shù)x滿(mǎn)足f(x)≤-a2+a+7,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,則_____

【答案】

【解析】

分子分母同時(shí)除以,把目標(biāo)式轉(zhuǎn)為的表達(dá)式,代入可求.

,則

故答案為:

【點(diǎn)睛】

本題考查三角函數(shù)的化簡(jiǎn)求值,常用方法:(1)弦切互化法:主要利用公式, 形如等類(lèi)型可進(jìn)行弦化切;(2)“1”的靈活代換的關(guān)系進(jìn)行變形、轉(zhuǎn)化.

型】填空
結(jié)束】
15

【題目】如圖,正方體的棱長(zhǎng)為1,中點(diǎn),連接,則異面直線所成角的余弦值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義“規(guī)范01數(shù)列”如下:共有項(xiàng),其中項(xiàng)為0,項(xiàng)為1,且對(duì)任意,,,…,中0的個(gè)數(shù)不少于1的個(gè)數(shù).若,則不同的“規(guī)范01數(shù)列”共有( )

A. 14個(gè) B. 13個(gè) C. 15個(gè) D. 12個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C: =1(y≥0),直線l:y=kx+1與曲線C交于A,D兩點(diǎn),A,D兩點(diǎn)在x軸上的射影分別為點(diǎn)B,C.記△OAD的面積S1 , 四邊形ABCD的面積為S2 . (Ⅰ)當(dāng)點(diǎn)B坐標(biāo)為(﹣1,0)時(shí),求k的值;
(Ⅱ)若S1= ,求線段AD的長(zhǎng);
(Ⅲ)求 的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù),關(guān)于x的方程3個(gè)不同的實(shí)數(shù)根,則( 。

A. b<﹣2c0B. b>﹣2c0C. b=﹣2c0D. b>﹣2c0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)旅游局欲將一塊長(zhǎng)20百米,寬10百米的矩形空地ABCD建成三星級(jí)鄉(xiāng)村旅游園區(qū),園區(qū)內(nèi)有一景觀湖EFG(如圖中陰影部分)以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標(biāo)系xOy,O為園區(qū)正門(mén),園區(qū)北門(mén)P在y正半軸上,且PO=10百米。景觀湖的邊界線符合函數(shù)的模型。

(1)若建設(shè)一條與AB平行的水平通道,將園區(qū)分成面積相等的兩部分,其中湖上的部分建成玻璃棧道,求玻璃棧道的長(zhǎng)度。

(2)若在景觀湖邊界線上一點(diǎn)M修建游船碼頭,使得碼頭M到正門(mén)O的距離最短,求此時(shí)M點(diǎn)的橫坐標(biāo)。

(3)設(shè)圖中點(diǎn)B為倉(cāng)庫(kù)所在地,現(xiàn)欲在線段OB上確定一點(diǎn)Q建貨物轉(zhuǎn)運(yùn)站,將貨物從點(diǎn)B經(jīng)Q點(diǎn)直線轉(zhuǎn)運(yùn)至點(diǎn)P(線路PQ不穿過(guò)景觀湖),使貨物轉(zhuǎn)運(yùn)距離QB+PQ最短,試確定點(diǎn)P的位置。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】Ⅰ)如表所示是某市最近5年個(gè)人年平均收入表節(jié)選.求y關(guān)于x的回歸直線方程,并估計(jì)第6年該市的個(gè)人年平均收入(保留三位有效數(shù)字).

年份x

1

2

3

4

5

收入y(千元)

21

24

27

29

31

其中, 1:= ,=

Ⅱ)下表是從調(diào)查某行業(yè)個(gè)人平均收入與接受專(zhuān)業(yè)培訓(xùn)時(shí)間關(guān)系得到2×2列聯(lián)表:

受培時(shí)間一年以上

受培時(shí)間不足一年

總計(jì)

收入不低于平均值

60

20

收入低于平均值

10

20

總計(jì)

100

完成上表,并回答:能否在犯錯(cuò)概率不超過(guò)0.05的前提下認(rèn)為收入與接受培訓(xùn)時(shí)間有關(guān)系”.

2:

PK2k0

0.50

0.40

0.10

0.05

0.01

0.005

k0

0.455

0.708

2.706

3.841

6.635

7.879

3:

K2=.(n=a+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中, .

(Ⅰ)證明: ;

(Ⅱ)平面 平面, ,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案