已知F1、F2為橢圓
x2
25
+
y2
9
=1的兩焦點(diǎn),過F1的直線交橢圓于A、B兩點(diǎn),若|F2A|+|F2B|=14,則|AB|=
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用橢圓的標(biāo)準(zhǔn)方程及其定義即可得出.
解答: 解:∵橢圓
x2
25
+
y2
9
=1,∴a=5.
∴|F1A|+|F2A|=|F1B|+|F2B|=2a=10,
∵|F2A|+|F2B|=14,
∴|AB|=|F1A|+|F1B|=20-14=6.
故答案為:6.
點(diǎn)評(píng):本題考查了橢圓的標(biāo)準(zhǔn)方程及其定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=asinx-b(a>0)的最大值為2,最小值為1,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義行列式的運(yùn)算:
.
a1a2
b1b2
.
=a1b2-a2b1,若將函數(shù)f(x)=
.
3
sinx
1cosx
.
的圖象向左平移t(t>0)個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則t的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
a
=(1,2),
b
=(-2,y),若
a
b
,則|
b
|=(  )
A、
2
B、2
2
C、
5
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F(2,0),過F得直線交橢圓與A,B兩點(diǎn),若AB的中點(diǎn)為 (
1
2
,
1
2
)
,則C得到方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓16x2+9y2=144長(zhǎng)軸長(zhǎng)是( 。
A、4B、3C、8D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}公比大于1的為等比數(shù)列,a3=2,a2+a4=
20
3

(1)求{an}的通項(xiàng)公式;
(2)求a1+a4+a7+…+a3n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式
t
t2+9
≤a≤
t+2
t2
在t∈[1,4]上恒成立,則a的取值范圍是( 。
A、[
1
10
,3]
B、[
1
6
,
3
8
]
C、[
1
10
3
8
]
D、[
4
25
,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為測(cè)量某建筑物AB的高度及取景點(diǎn)C與F之間的距離(點(diǎn)B,C,D,F(xiàn) 在同一水平面上,AB⊥平面BCF,且B,C,D三點(diǎn)共線),某校研究性學(xué)習(xí)小組的同學(xué)在C,D,F(xiàn)三點(diǎn)處測(cè)得頂點(diǎn)A的仰角分別為45°,30°,30°.若∠FCB=60°,CD=16(
3
-1)m.
(1)求建筑物AB的高度;
(2)求取景點(diǎn)C與F之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案