設(shè)各項(xiàng)均為正實(shí)數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足數(shù)學(xué)公式(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}的通項(xiàng)公式為數(shù)學(xué)公式(t∈N*),若b1,b2,bm(m≥3,m∈N*)成等差數(shù)列,求t和m的值;
(Ⅲ)證明:存在無(wú)窮多個(gè)三邊成等比數(shù)列且互不相似的三角形,其三邊長(zhǎng)為數(shù)列{an}中的三項(xiàng)數(shù)學(xué)公式,數(shù)學(xué)公式數(shù)學(xué)公式

解:(Ⅰ)由題意,4Sn=①,
當(dāng)n≥2時(shí),有4Sn-1=②,
②-①,得(an+an-1)(an-an-1-2)=0,
∵{an}各項(xiàng)為正,
∴an+an-1>0,
從而an-an-1=2,故{an}成公差2的等差數(shù)列.
又n=1時(shí),4a1=,解得a1=1.故an=2n-1. …(4分)
(Ⅱ)bn=,要使b1,b2,bm成等差數(shù)列,須2b2=b1+bm,
即2×=+,整理得m=3+,
因?yàn)閙,t為正整數(shù),t只能取2,3,5.
,,. …(10分)
(Ⅲ)作如下構(gòu)造:=(2k+3)2,=(2k+3)(2k+5),=(2k+5)2,其中k∈N*,它們依次為數(shù)列{an}中第2k2+6k+5項(xiàng),第2k2+8k+8項(xiàng),第2k2+10k+13,
顯然它們成等比數(shù)列,且+,所以它們能組成三角形.
由k∈N*的任意性,知這樣的三角形有無(wú)窮多個(gè).
下面用反證法證明其中任意兩個(gè)三角形△A1B1C1與△A2B2C2不相似.
若△A1B1C1∽△A2B2C2,且k1≠k2,則=,整理得=,所以k1=k2,這與k1≠k2矛盾,因此,任意兩個(gè)三角形不相似.故原命題正確. …(16分)
分析:(Ⅰ)由4Sn=①,類(lèi)推,當(dāng)n≥2時(shí),有4Sn-1=②,作差后依題意得到an-an-1=2,再求得a1=1即可求得數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)依題意,要使b1,b2,bm成等差數(shù)列,須2b2=b1+bm,整理得m=3+,由m,t為正整數(shù),可求得t,m的值;
(Ⅲ)構(gòu)造:=(2k+3)2=(2k+3)(2k+5),=(2k+5)2,其中k∈N*,使之成數(shù)列{an}中第2k2+6k+5項(xiàng),第2k2+8k+8項(xiàng),第2k2+10k+13,它們成等比數(shù)列且能組成三角形,可利用反證法證得任意兩個(gè)三角形△A1B1C1與△A2B2C2不相似.
點(diǎn)評(píng):本題考查數(shù)列與三角函數(shù)的綜合,考查等差數(shù)列的推證與通項(xiàng)的求法,突出考查構(gòu)造數(shù)列與推理論證的能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年新人教版高三上學(xué)期單元測(cè)試(5)數(shù)學(xué)試卷 題型:解答題

(14分)設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,已知,數(shù)

是公差為的等差數(shù)列。

(1)求數(shù)列的通項(xiàng)公式(用表示);

(2)設(shè)為實(shí)數(shù),對(duì)滿(mǎn)足的任意正整數(shù),不等式都成立。求證:的最大值為

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案