(本小題滿分12分)
某柑桔基地因冰雪災害,使得果林嚴重受損,為此有關專家提出兩種拯救果林的方案,每種方案都需分兩年實施;若實施方案一,預計當年可以使柑桔產(chǎn)量恢復到災前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5. 若實施方案二,預計當年可以使柑桔產(chǎn)量達到災前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6. 實施每種方案,第二年與第一年相互獨立。令表示方案實施兩年后柑桔產(chǎn)量達到災前產(chǎn)量的倍數(shù)。
(1)寫出的分布列;
(2)實施哪種方案,兩年后柑桔產(chǎn)量超過災前產(chǎn)量的概率更大?
(3)不管哪種方案,如果實施兩年后柑桔產(chǎn)量達不到災前產(chǎn)量,預計可帶來效益10萬元;兩年后柑桔產(chǎn)量恰好達到災前產(chǎn)量,預計可帶來效益15萬元;柑桔產(chǎn)量超過災前產(chǎn)量,預計可帶來效益20萬元;問實施哪種方案所帶來的平均效益更大?

(1)、的分布列分別為:


0.8
0.9
1.0
1.125
1.25
P
0.2
0.15
0.35
0.15
0.15
 

0.8
0.96
1.0
1.2
1.44
P
0.3
0.2
0.18
0.24
0.08
 
(2)方案二兩年后柑桔產(chǎn)量超過災前產(chǎn)量的概率更大。
(3)方案一所帶來的平均效益更大。

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案