已知四邊形ABCD為平行四邊形,BC⊥平面ABEAEBE,BE = BC = 1,AE = ,M為線(xiàn)段AB的中點(diǎn),N為線(xiàn)段DE的中點(diǎn),P為線(xiàn)段AE的中點(diǎn)。

(1)求證:MNEA;
(2)求四棱錐MADNP的體積。

(1)利用線(xiàn)面垂直的性質(zhì)定理來(lái)證明線(xiàn)線(xiàn)垂直,主要是對(duì)于的證明。(2)1

解析試題分析:解:方法一:
(Ⅰ)取中點(diǎn),連接,

平面,平面,
平面
,

(Ⅱ)過(guò),連接
平面,
平面,

平面
,又,
平面,
二面角為二面角的平面角
中,

  二面角的余弦值為
方法二:
(Ⅰ)平面平面
平面平面,
過(guò)平面,則
分別為軸,軸,軸建立空間直角坐標(biāo)系



,

(Ⅱ),,設(shè)為平面的一個(gè)法向量
為滿(mǎn)足題意的一組解
,,設(shè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,是正三角形,都垂直于平面,且的中點(diǎn).

求證:(1)平面;
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

 是雙曲線(xiàn) 上一點(diǎn),、分別是雙曲線(xiàn)的左、右頂點(diǎn),直線(xiàn),的斜率之積為.

(1)求雙曲線(xiàn)的離心率;
(2)過(guò)雙曲線(xiàn)的右焦點(diǎn)且斜率為1的直線(xiàn)交雙曲線(xiàn)于,兩點(diǎn),為坐標(biāo)原點(diǎn),為雙曲線(xiàn)上一點(diǎn),滿(mǎn)足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F為CE上的點(diǎn),且BF平面AC E.

(1)求證:AEBE;
(2)求三棱錐D—AEC的體積;
(3)求二面角A—CD—E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線(xiàn)段EF的中點(diǎn).

(Ⅰ)求證AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大;
(Ⅲ)試在線(xiàn)段AC上確定一點(diǎn)P,使得PF與BC所成的角是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且GEF的中
點(diǎn).

(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在△中,,,點(diǎn)上,,.沿將△翻折成△,使平面平面;沿將△翻折成△,使平面平面

(Ⅰ)求證:平面
(Ⅱ)設(shè),當(dāng)為何值時(shí),二面角的大小為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,平面AEB,,,,,G是BC的中點(diǎn).

(Ⅰ)求證:
(Ⅱ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
如圖:在三棱錐D-ABC中,已知是正三角形,AB平面BCD,,E為BC的中點(diǎn),F(xiàn)在棱AC上,且

(1)求三棱錐DABC的表面積;
(2)求證AC⊥平面DEF;
(3)若MBD的中點(diǎn),問(wèn)AC上是否存在一點(diǎn)N,使MN∥平面DEF?若存在,說(shuō)明點(diǎn)N的位置;若不存在,試說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案