如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且GEF的中
點.

(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.

(1)先證AG⊥平面CBG  (2)

解析試題分析:(1)證.正方形ABCD,∵面ABCD⊥面ABEF且交于AB,∴CB⊥面ABEF
∵AG,GB面ABEF, ∴CB⊥AG,CB⊥BG.又AD=2a,AF= a, ABEF是矩形,G是EF的中點.
∴AG=BG=,AB=2a, AB2=AG2+BG2, ∴AG⊥BG,∵BC∩BG=B,∴AG⊥平面CBG,而AG面AGC,故平
面AGC⊥平面BGC.  
(2)解.如圖,由(1)知面AGC⊥面BGC,且交于GC,在平面BGC內(nèi)作BH⊥GC,垂足為H,則BH⊥平面AGC,
∴∠BGH是GB與平面AGC所成的角.

∴在R t△CBG中
又BG=,∴ 
考點:平面與平面垂直的判定;直線與平面所成的角.
點評:本題考查面面垂直的判定方法,以及求線面成的角的求法,體現(xiàn)轉(zhuǎn)化的思想.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.

(1)求證:GH∥平面CDE;
(2)若,求四棱錐F-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是均以為斜邊的等腰直角三角形,,分別為,的中點,的中點,且平面.

(1)證明:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面,
,,的中點.

(Ⅰ)求和平面所成的角的大小;
(Ⅱ)證明平面;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四邊形ABCD為平行四邊形,BC⊥平面ABEAEBE,BE = BC = 1,AE = ,M為線段AB的中點,N為線段DE的中點,P為線段AE的中點。

(1)求證:MNEA;
(2)求四棱錐MADNP的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,,

(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點,使// 平面?若存在,求出;若不存在,說明理由.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,且AB=AD,BC=DC.

(1)求證:平面EFGH;
(2)求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四邊形中,對角線,,的重心,過點的直線分別交,沿折起,沿折起,正好重合于.

(Ⅰ) 求證:平面平面
(Ⅱ)求平面與平面夾角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,已知所在的平面,AB是⊙的直徑,,是⊙上一點,且分別為中點。

(1)求證:平面;
(2)求證:
(3)求三棱錐-的體積。

查看答案和解析>>

同步練習冊答案