已知(1+sin2α)sinβ=sinαcosαcosβ(cosαcosβ≠0),設(shè)tanα=x,tanβ=y,記y=f(x).
(Ⅰ)求f(x)的解析表達(dá)式;
(Ⅱ)若α角是一個三角形的最小內(nèi)角,試求函數(shù)f(x)的值域.
【答案】分析:(Ⅰ)利用平方關(guān)系式代換“1”,化簡(1+sin2α)sinβ=sinαcosαcosβ為tanα,tanβ的表達(dá)式,求出函數(shù)的表達(dá)式.
(Ⅱ)α角是一個三角形的最小內(nèi)角,通過設(shè)函數(shù)g(x)=2x+,利用函數(shù)的導(dǎo)數(shù)求出極值點,利用函數(shù)的單調(diào)性,求出函數(shù)的極值,然后確定函數(shù)f(x)的值域.
解答:解:(Ⅰ)已知可變?yōu)椋╟os2α+2sin2α)sinβ=sinαcosαcosβ…(2分)
因為cosαcosβ≠0,(1+2tan2α)tanβ=tanα,y+2x2y=x,
所以,即f(x)=.…(5分)
(Ⅱ)因為α是三角形的最小內(nèi)角,∴0<α≤,0,
設(shè)g(x)=2x+,0,
g′(x)=2-,令g′(x)=0,解答x=,
,g′(x)<0,函數(shù)g(x)是減函數(shù),
時,g′(x)>0,函數(shù)g(x)是增函數(shù),
所以g(x)在是減函數(shù),在是增函數(shù),
所以 當(dāng)時,gmin(x)=…(11分)
故函數(shù)f(x)的值域為
點評:本題考查三角函數(shù)的化簡求值,函數(shù)的導(dǎo)數(shù)與函數(shù)的極值的關(guān)系,考查轉(zhuǎn)化思想,計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin2
π+2x
4
,cosx+sinx)
,
b
=(4sinx,cosx-sinx)
f(x)=
a
b

(1)求f(x)的解析式;
(2)求f(x)的圖象、y軸的正半軸及x軸的正半軸三者圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin2(x-
π
6
)+sin2(x+
π
6
)+
3
sinxcosx

(1)求f(x)的最大值以及取得最大值時自變量x的取值構(gòu)成的集合;
(2)當(dāng)自變量x∈[-
π
12
,
12
]
時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+sin2α)sinβ=sinαcosαcosβ(cosαcosβ≠0),設(shè)tanα=x,tanβ=y,記y=f(x).
(Ⅰ)求f(x)的解析表達(dá)式;
(Ⅱ)若α角是一個三角形的最小內(nèi)角,試求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知(1+sin2α)sinβ=sinαcosαcosβ(cosαcosβ≠0),設(shè)tanα=x,tanβ=y,記y=f(x).
(Ⅰ)求f(x)的解析表達(dá)式;
(Ⅱ)若α角是一個三角形的最小內(nèi)角,試求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案