橢圓E的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為.點(diǎn)P(1,)、A、B在橢圓E上,且+=m(m∈R).
(1)求橢圓E的方程及直線AB的斜率;
(2)求證:當(dāng)△PAB的面積取得最大值時(shí),原點(diǎn)O是△PAB的重心.
解:(1)由=及解得a2=4,b2=3,
橢圓方程為;…………………………………………………………2分
設(shè)A(x1,y1)、B(x2,y2), 由得
(x1+x2-2,y1+y2-3)=m(1,),即
又,,兩式相減得
; ………………………6分
(2)設(shè)AB的方程為 y=,代入橢圓方程得:x2-tx+t2-3=0,
△=3(4-t2),|AB|=,
點(diǎn)P到直線AB的距離為d=,
S△PAB == (-2<t<2). ……………….10分
令f(t) =3(2-t)3(2+t),則f’(t)=-12(2-t)2(t+1),由f’(t)=0得t=-1或2(舍),
當(dāng)-2<t<-1時(shí),f’(t)>0,當(dāng)-1<t<2時(shí)f’(t)<0,所以當(dāng)t=-1時(shí),f(t)有最大值81,
即△PAB的面積的最大值是;
根據(jù)韋達(dá)定理得 x1+x2=t=-1,而x1+x2=2+m,所以2+m=-1,得m=-3,
于是x1+x2+1=3+m=0,y1+y2+=3++=0,
因此△PAB的重心坐標(biāo)為(0,0).……………………………………………………13分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
3 |
2 |
PA |
PB |
OP |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
3 |
2 |
PA |
PB |
OP |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com