θ是第三象限角,方程x2+y 2sinθ=cosθ表示的曲線是(  ).
A.焦點(diǎn)在x軸上的橢圓B.焦點(diǎn)在y軸上的橢圓
C.焦點(diǎn)在x軸上的雙曲線D.焦點(diǎn)在y軸上的雙曲線
D

試題分析:∵θ是第三象限角,∴sinθ<0, cosθ<0, ∴方程x2+y 2sinθ=cosθ化為,為焦點(diǎn)在y軸上的雙曲線,故選D
點(diǎn)評(píng):熟練掌握?qǐng)A錐曲線的方程特點(diǎn)是解決此類問題的關(guān)鍵,屬基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn) 為、且過點(diǎn)橢圓;
(2)與雙曲線有相同的漸近線,且過點(diǎn)的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

知圓柱的底面半徑為2,高為3,用一個(gè)平面去截,若所截得的截面為橢圓,則橢圓的離心率的取值范圍為( 。
A.B.(0,C.D.(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以雙曲線的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓的標(biāo)準(zhǔn)方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別是橢圓的左右焦點(diǎn),過軸垂直的直線交橢圓于兩點(diǎn),若是銳角三角形,則橢圓離心率的范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心及的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩點(diǎn),將其坐標(biāo)記錄于下表:










(Ⅰ)求曲線、的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線過拋物線的焦點(diǎn)與橢圓交于不同的兩點(diǎn)、,當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,其左、右焦點(diǎn)分別為,短軸長(zhǎng)為,點(diǎn)在橢圓上,且滿足的周長(zhǎng)為6.
(Ⅰ)求橢圓的方程;;
(Ⅱ)設(shè)過點(diǎn)的直線與橢圓相交于A、B兩點(diǎn),試問在x軸上是否存在一個(gè)定點(diǎn)M使恒為定值?若存在求出該定值及點(diǎn)M的坐標(biāo),若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法中,正確的有        
①若點(diǎn)是拋物線上一點(diǎn),則該點(diǎn)到拋物線的焦點(diǎn)的距離是;
②設(shè)、為雙曲線的兩個(gè)焦點(diǎn),為雙曲線上一動(dòng)點(diǎn),,則的面積為
③設(shè)定圓上有一動(dòng)點(diǎn),圓內(nèi)一定點(diǎn),的垂直平分線與半徑的交點(diǎn)為點(diǎn),則的軌跡為一橢圓;
④設(shè)拋物線焦點(diǎn)到準(zhǔn)線的距離為,過拋物線焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),則、成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的終邊經(jīng)過點(diǎn)A,且點(diǎn)A在拋物線的準(zhǔn)線上,則( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案