函數(shù)y=x2+2x-4的定義域是(-2,5],則其值域是( 。
A、(4,31]
B、[-5,-4]
C、(-5,31]
D、[-5,31]
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)的圖象和性質(zhì)分析函數(shù)y=x2+2x-4在定義域(-2,5]上的單調(diào)性,進(jìn)而求出函數(shù)的最值,可得函數(shù)的值域.
解答: 解:∵函數(shù)y=x2+2x-4的圖象是開(kāi)口朝上且以直線x=-1為對(duì)稱軸的拋物線,
∴函數(shù)y=x2+2x-4在(-2,-1]為減函數(shù),
在[-1,5]上為增函數(shù),
故當(dāng)x=-1時(shí),取最小值-5,
當(dāng)x=5時(shí),取最大值31,
故函數(shù)的值域?yàn)閇-5,31],
故選:D
點(diǎn)評(píng):本題考查二次函數(shù)在閉區(qū)間上的最值,解答本題關(guān)鍵是根據(jù)二次函數(shù)的性質(zhì)判斷出函數(shù)在何處取到最值,二次函數(shù)在閉區(qū)間上的最值在高中數(shù)學(xué)中應(yīng)用十分廣泛,一些求最值的問(wèn)題最后往往歸結(jié)到二次函數(shù)的最值上來(lái).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,an+1=
2an
an+2
,求證:數(shù)列{
1
an
}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}為首項(xiàng)為a1、公差為d的等差數(shù)列,且a16+a17+a18=-36,a9=-36,其前n項(xiàng)和為Sn
(1)求數(shù)列{an}的首項(xiàng)a1及公差d.
(2)求Sn的最小值,并求出Sn取得最小值時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系上伸縮變換的表達(dá)式為
x′=xsin
π
6
y′=ycos
π
6
,正弦曲線y=sinx在此變換下得到的曲線的方程是( 。
A、y=2sin2x
B、y=
3
2
sin2x
C、y=
2
3
3
sin2x
D、y=
3
sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P={a,b}又P的所有子集組成集合Q,用列舉法表示Q,則Q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的一元二次方程x2-3x+m=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為( 。
A、m>
9
4
B、m=
9
4
C、m<
9
4
D、m<-
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(
1
2
|x-2|+2cosπx(-1≤x≤5)的所有零點(diǎn)之和等于(  )
A、4B、8C、12D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x2-2x-3,x∈[-1,2)的值域( 。
A、(-3,0]
B、[-4,0)
C、[-4,0]
D、[-3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是( 。
A、某事件發(fā)生的頻率是客觀存在的,與試驗(yàn)次數(shù)無(wú)關(guān)
B、某事件發(fā)生的概率為0,則該事件是不可能事件
C、某事件發(fā)生的概率是隨機(jī)的,在實(shí)驗(yàn)前不能確定
D、每個(gè)實(shí)驗(yàn)結(jié)果出現(xiàn)的頻率之和一定等于1

查看答案和解析>>

同步練習(xí)冊(cè)答案