如圖,在楊輝三角中(三角形兩腰數(shù)字為1,其余各項等于兩肩數(shù)字之和),從上往下共有n行,則這些數(shù)中不是1的數(shù)字之和為


  1. A.
    2n-2n
  2. B.
    2n-2n+1
  3. C.
    2n-1
  4. D.
    n2-2n+1
A
分析:根據(jù)二項式系數(shù)得:第n行所有數(shù)之和為:(1+1)(n-1),其中有兩個1,則所有非1數(shù)之和為:(1+1)(n-1)-2(第一行除外),然后再用等比數(shù)列前n項和公式求和減去各行中的1即可.
解答:∵第n行所有數(shù)之和為:(1+1)(n-1)(第一行除外)
∴則這些數(shù)中不是1的數(shù)字之和為:
(1+1)0+(1+1)1+(1+1)2+(1+1)3…+(1+1)(n-2)+(1+1)(n-1)-2n+1
=
=2n-2n
故選A
點(diǎn)評:本題主要考查數(shù)列的抽象與構(gòu)造,研究研究數(shù)列的通項與前n項和公式及其應(yīng)用.還考查了二項式系數(shù),體現(xiàn)了知識間的滲透,在轉(zhuǎn)化與應(yīng)用中要求熟練清晰.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在楊輝三角中,從上往下數(shù)共有n(n∈N*)行,在這些數(shù)中非1的數(shù)字之和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在楊輝三角中(三角形兩腰數(shù)字為1,其余各項等于兩肩數(shù)字之和),從上往下共有n行,則這些數(shù)中不是1的數(shù)字之和為( 。
A、2n-2nB、2n-2n+1C、2n-1D、n2-2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在楊輝三角中,斜線l的上方從1按箭頭方向可以構(gòu)成一個“鋸齒形”的數(shù)列{an}:1,3,3,4,6,5,10,…,記其前n項和為Sn,則S21的值為
361
361

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在楊輝三角中,斜線l的上方,從1開始箭頭所示的數(shù)組成一個鋸齒形數(shù)列:1,3,3,4,6,5,10,…,記其n項和為Sn,則S21等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在楊輝三角中,斜線上方的數(shù)組成數(shù)列:1,3,6,10,…,記這個數(shù)列的前n項和為Sn,則
lim
n→∞
n3
Sn
=
6
6

查看答案和解析>>

同步練習(xí)冊答案