如圖所示,等腰△ABC的底邊AB=6,高CD=3,點(diǎn)E是線段BD上異于點(diǎn)B、D的動(dòng)點(diǎn).點(diǎn)F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.記,用表示四棱錐P-ACFE的體積.

(Ⅰ)求 的表達(dá)式;

(Ⅱ)當(dāng)x為何值時(shí),取得最大值?

(Ⅲ)當(dāng)V(x)取得最大值時(shí),求異面直線AC與PF所成角的余弦值

 

【答案】

(Ⅰ)(Ⅱ)時(shí)取得最大值(Ⅲ)

【解析】

試題分析:(Ⅰ)根據(jù)四棱錐的體積公式可知,

;

(Ⅱ),

時(shí), 時(shí), 

時(shí)取得最大值.

(Ⅲ)以E為空間坐標(biāo)原點(diǎn),直線EF為軸,直線EB為軸,直線EP為軸建立空間直角坐標(biāo)系,則;

,

設(shè)異面直線AC與PF夾角是,

.

考點(diǎn):本小題主要考查四棱錐的體積,異面直線所成的角,函數(shù)的最值.

點(diǎn)評(píng):本小題融合了四棱錐的體積計(jì)算,函數(shù)的最值,異面直線所成的角等問題,比較綜合,但是難度不大,求解時(shí)要注意取值范圍.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,定點(diǎn)A(2,π),動(dòng)點(diǎn)B在直線ρsin(θ+
π
4
)=
2
2
上運(yùn)動(dòng),則線段AB的最精英家教網(wǎng)短長(zhǎng)度為
 

(不等式選講選做題)設(shè)函數(shù)f(x)=|x-1|+|x-2|,則f(x)的最小值為
 

(幾何證明選講選做題) 如圖所示,等腰三角形ABC的底邊AC長(zhǎng)為6,其外接圓的半徑長(zhǎng)為5,則三角形ABC的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,等腰△ABC的底邊AB=6
6
,高CD=3,點(diǎn)E是線段BD上異于點(diǎn)B、D的動(dòng)點(diǎn),點(diǎn)F在BC邊上,且EF⊥AB,現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE,記BE=x,V(x)表示四棱柱P-ACFE的體積.
(1)求證:面PEF⊥面ACFE;
(2)求V(x)的表達(dá)式,并求當(dāng)x為何值時(shí)V(x)取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,等腰△ABC的底邊AB=6
6
,高CD=3,點(diǎn)E是線段BD上異于點(diǎn)B,D的動(dòng)點(diǎn),點(diǎn)F在BC邊上,且EF⊥AB,現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AC,記BE=x,V(x)表示四棱錐P-ACFE的體積.
(1)求V(x)的表達(dá)式;
(2)當(dāng)x為何值時(shí),V(x)取得最大值?
(3)當(dāng)V(x)取得最大值時(shí),求異面直線AC與PF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建師大附中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分) 如圖所示,等腰△ABC的底邊AB=,高CD=3,點(diǎn)E是線段BD上異于點(diǎn)B、D的動(dòng)點(diǎn).點(diǎn)F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.記BE=x,V(x)表示四棱錐P-ACFE的體積.

(Ⅰ)求V(x)的表達(dá)式;   

(Ⅱ)當(dāng)x為何值時(shí),V(x)取得最大值?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省高三第三次月考理科數(shù)學(xué)(重點(diǎn)班)(解析版) 題型:解答題

如圖所示,等腰△ABC的底邊AB=6,高CD=3,點(diǎn)E是線段BD上異于點(diǎn)B、D的動(dòng)點(diǎn).點(diǎn)F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.記,用表示四棱錐P-ACFE的體積.

(Ⅰ)求 的表達(dá)式;

(Ⅱ)當(dāng)x為何值時(shí),取得最大值?

(Ⅲ)當(dāng)V(x)取得最大值時(shí),求異面直線AC與PF所成角的余弦值

 

查看答案和解析>>

同步練習(xí)冊(cè)答案