(-∞,-2)∪(3,+∞) 12π
分析:A,可設(shè)極點為O,則∠AOB=
,而|OA|=3,|OB|=4,由余弦定理即可求得AB兩點間的距離;
B,可構(gòu)造函數(shù)f(x)=|x+1|+|x-2|=
,由f(x)>5即可求得其解集;
C,由正弦定理
=2R(R為圓O的半徑)即可求得R,從而可得圓O的面積.
解答:A:設(shè)極點為O,∵在極坐標系中,兩點為
,
,
∴∠AOB=
,又|OA|=3,|OB|=4,
∴|AB|
2=|OA|
2+|OB|
2-2|OA|•|OB|cos∠AOB=9+16-2×3×4×
=13,
∴|AB|=
;
B:令f(x)=|x+1|+|x-2|,則f(x)=
,
∵|x+1|+|x-2|>5,
∴當(dāng)x≤-1,-2x+1>5,解得x<-2
當(dāng)-1<x<2,有3>5(舍去)
當(dāng)x≥2,2x-1>5解得x>3.
綜上所述,f(x)>5的解集為{x|x<-2或x>3};
C:在△ABC中,設(shè)△ABC中的外接圓的半徑為R,面積為S,
∵BC=6,∠BAC=120°,
∴由正弦定理得:
=2R,即
=4
=2R,
∴R=2
,
∴S=πR
2=12π.
故A的答案為:
;B的答案為:{x|x<-2或x>3};C的答案為:12π.
點評:本題A考查簡單曲線的極坐標方程,B考查絕對值不等式,C考查正弦定理,著重考查正弦定理與余弦定理的應(yīng)用及絕對值不等式的解法,屬于基礎(chǔ)題.