一個射手進行射擊,記事件E1:“脫靶”,E2:“中靶”,E3:“中靶環(huán)數(shù)大于4”,E4:“中靶環(huán)數(shù)不小于5”,則在上述事件中,互斥而不對立的事件共有 (  ).
A.1對B.2對C.3對D.4對
B

試題分析:由于事件E1:“脫靶”;E2:“中靶”;E3:“中靶環(huán)數(shù)大于4”;E4:“中靶環(huán)數(shù)不小于5”;則在上述事件中,互斥而不對立的事件分別為E1與E3;E1與E4,共2對,故答案為 B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

地為綠化環(huán)境,移栽了銀杏樹棵,梧桐樹棵.它們移栽后的成活率分別
,每棵樹是否存活互不影響,在移栽的棵樹中:
(1)求銀杏樹都成活且梧桐樹成活棵的概率;
(2)求成活的棵樹的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人玩一種游戲:在裝有質(zhì)地、大小完全相同,編號分別為1,2,3,4,5五個球的口袋中,甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏.
(1)求甲贏且編號和為6的事件發(fā)生的概率;
(2)這種游戲規(guī)則公平嗎?試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設O為坐標原點,點P的坐標(x-2,x-y)
(Ⅰ)在一個盒子中,放有標號為1,2,3的三張卡片,現(xiàn)從此盒中有放回地先后抽到兩張卡片的標號分別記為x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(Ⅱ)若利用計算機隨機在[0,3]上先后取兩個數(shù)分別記為x,y,求P點在第一象限的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

任意說出星期一到星期日中的兩天(不重復),其中恰有一天是星期六的概率是(  )
A.
1
7
B.
2
7
C.
1
49
D.
2
49

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某兒童玩具自動售貨機里共有18只“海寶”和2只“熊貓”,而在每投一枚一元硬幣后,從出口隨機掉出一個玩具,則某孩子投了兩次硬幣,兩次都買到的是“海寶”的概率是______.(結(jié)果用最簡分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

有編號為1,2,3的三個白球,編號為4,5,6的三個黑球,這六個球除編號和顏色外完全相同,現(xiàn)從中任意取出兩個球.
(1)求取得的兩個球顏色相同的概率;
(2)求取得的兩個球顏色不相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一工廠生產(chǎn)的100個產(chǎn)品中有90個一等品,10個二等品,現(xiàn)從這批產(chǎn)品中抽取4個,則其中恰好有一個二等品的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設A是如下形式的2行3列的數(shù)表,
a
b
c
d
e
f
滿足性質(zhì)P:a,b,c,d,e,f,且a+b+c+d+e+f=0
為A的第i行各數(shù)之和(i=1,2), 為A的第j列各數(shù)之和(j=1,2,3)記中的最小值。
(1)對如下表A,求的值
1
1
-0.8
0.1
-0.3
-1
(2)設數(shù)表A形如
1
1
-1-2d
d
d
-1
其中,求的最大值
(3)對所有滿足性質(zhì)P的2行3列的數(shù)表A,求的最大值。

查看答案和解析>>

同步練習冊答案