【題目】如圖,P是⊙O外一點,PA是切線,A為切點,割線PBC與⊙O相交于點B,C,PC=2PA,D為PC的中點,AD的延長線交⊙O于點E,證明:

(1)BE=EC;
(2)ADDE=2PB2

【答案】
(1)證明:連接OE,OA,

則∠OAE=∠OEA,∠OAP=90°,

∵PC=2PA,D為PC的中點,

∴PA=PD,

∴∠PAD=∠PDA,

∵∠PDA=∠CDE,

∴∠OEA+∠CDE=∠OAE+∠PAD=90°,

∴OE⊥BC,

∴E是 的中點,

∴BE=EC;


(2)證明:∵PA是切線,A為切點,割線PBC與⊙O相交于點B,C,

∴PA2=PBPC,

∵PC=2PA,

∴PA=2PB,

∴PD=2PB,

∴PB=BD,

∴BDDC=PB2PB,

∵ADDE=BDDC,

∴ADDE=2PB2


【解析】(1)連接OE,OA,證明OE⊥BC,可得E是 的中點,從而BE=EC;(2)利用切割線定理證明PD=2PB,PB=BD,結合相交弦定理可得ADDE=2PB2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且a,b,c成等比數(shù)列,sinB= ,
(1)求 + 的值;
(2)若 =12,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知CD是等邊三角形ABC的AB邊上的高,E,F分別是AC和BC邊的中點,現(xiàn)將ABC沿CD翻折成直二面角A-DC-B.

(1)求直線BC與平面DEF所成角的余弦值;

(2)在線段BC上是否存在一點P,使APDE?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個幾何體三視圖的正視圖和側視圖為邊長為2銳角60°的菱形,俯視圖為正方形,則此幾何體的內(nèi)切球表面積為(

A.8π
B.4π
C.3π
D.2π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質(zhì)量指數(shù)PM2.5(單位:μg/m3)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,就代表空氣污染越嚴重:

PM2.5
日均濃度

0~35

35~75

75~115

115~150

150~250

>250

空氣質(zhì)量級別

一級

二級

三級

四級

五級

六級

空氣質(zhì)量類型

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

甲、乙兩城市2013年2月份中的15天對空氣質(zhì)量指數(shù)PM2.5進行監(jiān)測,獲得PM2.5日均濃度指數(shù)數(shù)據(jù)如莖葉圖所示:

(1)根據(jù)你所學的統(tǒng)計知識估計甲、乙兩城市15天內(nèi)哪個城市空氣質(zhì)量總體較好?(注:不需說明理由)
(2)在15天內(nèi)任取1天,估計甲、乙兩城市空氣質(zhì)量類別均為優(yōu)或良的概率;
(3)在乙城市15個監(jiān)測數(shù)據(jù)中任取2個,設X為空氣質(zhì)量類別為優(yōu)或良的天數(shù),求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,若AB邊上的高為 ,且a2+b2=2 ab,則C=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的長軸長是短軸長的兩倍,且過點C(2,1),點C關于原點O的對稱點為點D.
(1)求橢圓E的方程;
(2)點P在橢圓E上,直線CP和DP的斜率都存在且不為0,試問直線CP和DP的斜率之積是否為定值?若是,求此定值;若不是,請說明理由:
(3)平行于CD的直線l交橢圓E于M,N兩點,求△CMN面積的最大值,并求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,底面△ABC是直角三角形,AB=AC=1,點P是棱BB1上一點,滿足 (0≤λ≤1).

(1)若λ= ,求直線PC與平面A1BC所成角的正弦值;
(2)若二面角P﹣A1C﹣B的正弦值為 ,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設p:實數(shù)x滿足x2﹣4ax+3a2<0; q:實數(shù)x滿足<0.

(1)若a=1,且p∨q為真,求實數(shù)x的取值范圍;

(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案