【題目】已知f(x)=2x2+bx+c.
(1)對任意x∈[﹣1,1],f(x)的最大值與最小值之差不大于6,求b的取值范圍;
(2)若f(x)=0有兩個不同實根,f(f(x))無零點,求證: ﹣ >1.
【答案】
(1)解:f(x)=2x2+bx+c= +c﹣ ,x∈[﹣1,1].
①當﹣ ≤﹣1,即b≥4時,函數(shù)f(x)在x∈[﹣1,1]單調遞增,∴f(1)﹣f(﹣1)≤6,化為:b≤3,舍去;
②當﹣ ≥1,即b≤﹣4時,函數(shù)f(x)在x∈[﹣1,1]單調遞減,∴f(﹣1)﹣f(1)≤6,化為:b≥﹣3,舍去;
③當﹣1<﹣ <1,即﹣4<b<4時,函數(shù)f(x)在 內(nèi)單調遞減,在 內(nèi)單調遞增,∴f(x)min=c﹣ .
∵f(1)﹣f(﹣1)=2b,當0≤b<4時,f(x)max=f(1)=2+b+c,則2+b+c﹣ ≤6,解得0≤b≤ .
當﹣4<b<0時,f(x)max=f(﹣1)=2﹣b+c,則2﹣b+c﹣ ≤6,解得 ≤b<0.
綜上可得:b的取值范圍是
(2)證明:f(x)=2x2+bx+c=0有兩個不同實根,∴△=b2﹣8c>0.
可得此方程的兩個實數(shù)根:x1= ,x2= .
要使f(f(x))無零點,則方程f(x)=x1,f(x)=x2,均無解.
∵x1>x2,∴f(x)=2x2+bx+c的最小值c﹣ >x1= ,即b2﹣8c+2 +1<2b+1,
∴ <2b+1,∴ +1< .
∴ ﹣ >1
【解析】(1)f(x)=2x2+bx+c= +c﹣ ,x∈[﹣1,1].對b分類討論,利用二次函數(shù)的單調性即可得出.(2)f(x)=2x2+bx+c=0有兩個不同實根,可得△>0.可得此方程的兩個實數(shù)根:x1= ,x2= .要使f(f(x))無零點,則方程f(x)=x1 , f(x)=x2 , 均無解.由于x1>x2 , 可得f(x)=2x2+bx+c的最小值c﹣ >x1 , 化簡整理即可證明.
科目:高中數(shù)學 來源: 題型:
【題目】為了了解初三女生身高情況,某中學對初三女生身高情況進行了一次測量,所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別 | 頻數(shù) | 頻率 |
145.5~149.5 | 1 | 0.02 |
149.5~153.5 | 4 | 0.08 |
153.5~157.5 | 20 | 0.40 |
157.5~161.5 | 15 | 0.30 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | m | n |
合 計 | M | N |
(1)求出表中m,n,M,N所表示的數(shù)分別是多少?
(2)畫出頻率分布直方圖;
(3)全體女生中身高在哪組范圍內(nèi)的人數(shù)最多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的三個頂點A(m,n)、B(2,1)、C(﹣2,3);
(1)求BC邊所在直線的方程;
(2)BC邊上中線AD的方程為2x﹣3y+6=0,且S△ABC=7,求點A的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,底面是直角梯形, , , ,平面平面.
(Ⅰ)求證: 平面.
(Ⅱ)求平面和平面所成二面角(小于)的大小.
(Ⅲ)在棱上是否存在點使得平面?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】張老師開車上班,有路線①與路線②兩條路線可供選擇. 路線①:沿途有兩處獨立運行的交通信號燈,且兩處遇到綠燈的概率依次為,若處遇紅燈或黃燈,則導致延誤時間2分鐘;若處遇紅燈或黃燈,則導致延誤時間3分鐘;若兩處都遇綠燈,則全程所花時間為20分鐘.
路線②:沿途有兩處獨立運行的交通信號燈,且兩處遇到綠燈的概率依次為,若處遇紅燈或黃燈,則導致延誤時間8分鐘;若處遇紅燈或黃燈,則導致延誤時間5分鐘;若兩處都遇綠燈,則全程所花時間為15分鐘.
(1)若張老師選擇路線①,求他20分鐘能到校的概率;
(2)為使張老師日常上班途中所花時間較少,你建議張老師選擇哪條路線?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求a,b的值;
(2)解不等式f(x)< ;
(3)求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=(1﹣x)|x﹣3|在(﹣∞,a]上取得最小值﹣1,則實數(shù)a的取值范圍是( )
A.(﹣∞,2]
B.
C.
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù)),
(1)求曲線在點處的切線方程;
(2)求的單調區(qū)間;
(3)設,其中為的導函數(shù),證明:對任意,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com