小明家訂了一份報紙,寒假期間他收集了每天報紙送達時間的數(shù)據(jù),并繪制成頻率分布直方圖,如圖所示.
(Ⅰ)根據(jù)圖中的數(shù)據(jù)信息,求出眾數(shù)x0;
(Ⅱ)小明的父親上班離家的時間y在上午7:00至7:30之間,而送報人每天在x0時刻前后半小時內(nèi)把報紙送達(每個時間點送達的可能性相等):
①求小明的父親在上班離家前能收到報紙(稱為事件A)的概率;
②求小明的父親周一至周五在上班離家前能收到報紙的天數(shù)X的數(shù)學期望.
考點:離散型隨機變量的期望與方差,頻率分布直方圖,古典概型及其概率計算公式
專題:計算題,概率與統(tǒng)計
分析:(1)根據(jù)眾數(shù)是頻率分布直方圖中最高矩形的底邊中點的橫坐標可得結論;
(2)①作出實驗的所有的基本事件由平面區(qū)域,以及事件“小明的父親能拿到報紙”(事件A)的基本事件,利用幾何概型的概率公式解之即可;
②分析可知小明的父親一周5天(假日除外)能取到報紙的天數(shù)X服從二項分布,然后根據(jù)二項分布的數(shù)學期望公式解之即可.
解答: 解:(1)觀察頻率分布直方圖,頻率最大在[6:50,7:10),眾數(shù)x0=7:00
(2)記報紙送達的時間為x,x∈[6.5,7.5]
①如圖所示,實驗的所有的基本事件由平面區(qū)域Ω={(x,y)|6.5≤x≤7.5,7≤x≤7.5}
而事件“小明的父親能拿到報紙”(事件A)的基本事件可由圖中陰影部分表示
∵SΩ=
1
2
×1=
1
2
,S=
1
2
-
1
2
×
1
2
×
1
2
=
3
8

∴P(A)=
3
4

②依題意得,X~B(5,
3
4

∴EX=5×
3
4
=
15
4

故小明的父親一周5天(假日除外)能取到報紙的天數(shù)X的數(shù)學期望為
15
4
點評:本題主要考查了眾數(shù)的概念,以及頻率分布直方圖和離散型隨機變量的概率分布,同時考查了識圖能力和計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,且cos2C=cosC.
(1)求角C;
(2)若b=2a,△ABC的面積S=
3
2
sinA•sinB,求sinA及邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各題
(1)52log53+log432-log3(log28)-
log23
log29

(2)lg500+lg
8
5
-
1
2
lg64+50(lg2+lg5)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a=30,S△ABC=105,其外接圓的半徑R=17,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3x2+bx+c在x=1處的切線是y=(3a-3)x-3a+4.
(1)試用a表示b和c;
(2)求函數(shù)f(x)≥-
3
2
在[1,3]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

深圳科學高中致力于培養(yǎng)以科學、技術、工程和數(shù)學見長的創(chuàng)新型高中學生,“工程技術”專用教室是學校師生共建的創(chuàng)造者的平臺,該教室內(nèi)某設備D價值24萬元,D的價值在使用過程中逐年減少,從第2年到第5年,每年初D的價值比上年初減少2萬元;從第6年開始,每年初D的價值為上年初的25%,
(1)求第5年初D的價值a5;
(2)求第n年初D的價值an的表達式;
(3)若設備D的價值an大于2萬元,則D可繼續(xù)使用,否則須在第n年初對D更新,問:須在哪一年初對D更新?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校高三4班有50名學生進行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對全班的學生進行編號(1~50號),并以不同的方法進行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):
編號 性別 投籃成績
2 90
7 60
12 75
17 80
22 83
27 85
32 75
37 80
42 70
47 60
甲抽取的樣本數(shù)據(jù)   
編號 性別 投籃成績
1 95
8 85
10 85
20 70
23 70
28 80
33 60
35 65
43 70
48 60
乙抽取的樣本數(shù)據(jù)
(Ⅰ)觀察乙抽取的樣本數(shù)據(jù),若從男同學中抽取兩名,求兩名男同學中恰有一名非優(yōu)秀的概率.
(Ⅱ)請你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認為投籃成績和性別有關?
優(yōu)秀 非優(yōu)秀 合計
合計 10
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結論判斷哪種抽樣方法更優(yōu)?說明理由.
下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.010 0.005 0.001
k 2.072 2.706 3.841 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別是角A、C的對邊,m=(b,2a-c),n=(cosB,cosC)且m∥n.
(Ⅰ)求角B的大;
(Ⅱ)設f(x)=cosωx+sin(ωx+
B
2
)(ω>0),且f(x)的最小正周期為π,求f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={0,1},B={2,3},設映射f:A→B,對A中的每一個元素x總有x+f(x)為偶數(shù),那么從A到B的映射的個數(shù)是
 

查看答案和解析>>

同步練習冊答案