【題目】一個正三棱柱的三視圖如圖所示,若該三棱柱的外接球的表面積為,則側視圖中的的值為 ( )
A. 6 B. 4 C. 3 D. 2
【答案】C
【解析】分析:首先通過觀察幾何體的三視圖,還原幾何體,得知其為一個正三棱柱,結合直三棱柱的外接球的球心在上下底面外心連線的中點處,利用外接球的表面積,得到底面邊長所滿足的關系式,求得其邊長,再根據(jù)側視圖中對應的邊長與底面邊長的關系,求得結果.
詳解:根據(jù)題中所給的幾何體的三視圖,可以得到該幾何體是一個正三棱柱,
設其底面邊長為,則底面正三角形的外接圓的半徑為,
設該三棱錐的外接球的半徑為R,
結合正三棱錐的外接球的球心在上下底面的外心連線的中點處,
則有,因為該三棱柱的外接球的表面積為,
則有,從而解得,
因為側視圖中對應的邊為底面三角形的邊的中線,
求得,故選C.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,由A,B兩個元件分別組成串聯(lián)電路(圖(1))和并聯(lián)電路(圖(2)),觀察兩個元件正常或失效的情況.
(1)寫出試驗的樣本空間;
(2)對串聯(lián)電路,寫出事件M=“電路是通路”包含的樣本點;
(3)對并聯(lián)電路,寫出事件N=“電路是斷路”包含的樣本點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當時,,現(xiàn)已畫出函數(shù)在y軸左側的圖象,如圖所示,請根據(jù)圖象.
(1)將函數(shù)的圖象補充完整,并寫出函數(shù)的遞增區(qū)間;
(2)寫出函數(shù)的解析式;
(3)若函數(shù),求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》里有一段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復還迎駑馬,二馬相逢.根據(jù)該問題設計程序框圖如下,若輸入,則輸出的值是( )
A. 8 B. 9 C. 12 D. 16
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線方程為,求的值;
(2)當時,求證:;
(3)設函數(shù),其中為實常數(shù),試討論函數(shù)的零點個數(shù),并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】狄利克雷函數(shù)是高等數(shù)學中的一個典型函數(shù),若,則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個命題:①對任意,都有;②對任意,都有;③對任意,都有, ;④對任意,都有.其中所有真命題的序號是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校20名同學的數(shù)學和英語成績如下表所示:
將這20名同學的兩顆成績繪制成散點圖如圖:
根據(jù)該校以為的經驗,數(shù)學成績與英語成績線性相關.已知這名學生的數(shù)學平均成績?yōu)?/span>,英語平均成績,考試結束后學校經過調查發(fā)現(xiàn)學號為的同學與學號為的同學(分別對應散點圖中的)在英語考試中作弊,故將兩位同學的兩科成績取消.
取消兩位作弊同學的兩科成績后,求其余同學的數(shù)學成績與英語成績的平均數(shù);
取消兩位作弊同學的兩科成績后,求數(shù)學成績x與英語成績y的線性回歸直線方程,并據(jù)此估計本次英語考試學號為8的同學如果沒有作弊的英語成績.(結果保留整數(shù))
附:位同學的兩科成績的參考數(shù)據(jù):
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小明同學在寒假社會實踐活動中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關系進行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫()與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):
日期 | 1月11號 | 1月12號 | 1月13號 | 1月14號 | 1月15號 |
平均氣溫() | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出關于的線性回歸方程式;
(3)根據(jù)(2)所得的線性回歸方程,若天氣預報1月16號的白天平均氣溫為,請預測該奶茶店這種飲料的銷量.
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設圓的圓心為A,直線過點B(1,0)且與軸不重合,交圓A于C,D兩點,過B作AC的平行線交AD于點E.
(Ⅰ)證明:為定值,并寫出點E的軌跡方程;
(Ⅱ)設點E的軌跡為曲線C1,直線交C1于M,N兩點,過B且與垂直的直線與C1交于P,Q兩點, 求證:是定值,并求出該定值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com